令和5年度 宮城県放射光利用実地研修 成果報告会

令和6年3月21日(木)

放射光 による

電線樹脂材料の残留応力に関する分析について

北日本電線株式会社 KITANIHON ELECTRIC CABLE CO., LTD.

新事業開発部 事業創出グループ

令和5年度 宮城県放射光利用実地研修 成果報告会

令和6年3月21日(木)

放射光 による

電線樹脂材料の残留応力に関する分析について

- 1. 会社紹介 とこれまでの放射光分析
- 2. 電線樹脂材料の課題 と 分析計画
- 3. シート試料の分析結果
- 4. 電線試料の分析結果(当日限り)
- 5. まとめと今後について

1-1. 会社概要

会社紹介と当社の放射光分析

商 号 北日本電線株式会社
代表者 取締役社長 田苗 博
創 立 1946年7月11日
資本金 135百万円
従業員数 376名(2023年7月1日現在)

社会の繁栄に貢献する価値の創造

1-2. 事業紹介

会社紹介と当社の放射光分析

1-3. これまでの放射光研究

会社紹介と当社の放射光分析

1-3. これまでの放射光研究

会社紹介と当社の放射光分析

ビームライン 分析手法 課題 結果 銅と防錆剤の 反応解析 - Cu-BTA PFY Pure Cu PFY (AichiSR) BL1N2 - CU-BTA TEY XAFS Pure Cu TEY 防錆被膜の 0.8 -結合して **いない** BTA BL6N1 (AichiSR) W QA 腐食耐性調查 0.2 -0.2 BL09XU (SPring-8) HAXPES 4 結合して **いる** BTA (角度分解) 920 923 925 928 930 933 935 938 940 943 945 948 950 953 955 Energy [eV] (AichiSR) X線CT **BL8S2** 絶縁体内部の 極小異物分析 BL47XU (SPring-8) エネルギー 差分法 BL20B2 (SPring-8) +XRD、XRF @SPring-8 BL47XU 6

2. 電線樹脂材料の課題と分析計画

2-1. 今回の目標と電線樹脂材料の課題

今回の目標

電線・ケーブルで使用される **樹脂材料** に対して、

放射光分析が有効か を検討する

ポリエチレン(PE、XLPE) ポリ塩化ビニル(PVC)

環境変化(温度変化)による

製品形状が変化 することがある

2-2. 加工時の残留応力(課題)

施工後の温度変化

絶縁体が **伸収縮** する

シュリンクバックによる地絡事故と対策例

製品評価技術基盤機構の資料より抜粋 https://www.nite.go.jp/data/000107435.pdf

原因 ?

① 加工熱等で分子間が 歪んだまま凝固

② ヒートサイクルで 分子間の歪み が戻る

絶縁体加工時の **残留応力**

が原因?

③絶縁体(シース)の伸収縮

2-3. "分子間の歪み"とは?

非晶性樹脂

ポリエチレン(PE)

ポリ塩化ビニル(PVC)

結晶性樹脂

高分子論文集, Vol. 66, No. 12, pp. 612-618 (2009)

放射光の広角X線散乱(WAXS)、小角X線散乱(SAXS)、極小角X線散乱(USAXS)で

どの 階層の分子間 が 伸収縮に関与 するのか解明したい

2-4. 測定試料

樹脂用ロール機/プレス機を用いて作成

シート試料(厚さ1mm)の配合

試料名 配合材料	配合 [wt%]	LDPE	EEA	СВ	MgOH	All
ポリエチレン樹脂 (低密度PE)	-	0	0	0	0	0
エチレン-エチル アクリレートコポリマー (改質剤)	5		0			0
カーボンブラック (着色剤、耐候性)	2			0		0
水酸化マグネシウム (難燃剤)	50				0	0

電線試料

工場で試作したケーブル (難燃ポリエチレンシースケーブル)

添加剤として、

EEA、Mg(OH)₂、CB などを含有 (FT-IR、GC/MS等による分析)

2-4. 測定試料

シート試料

樹脂用ロール機/プレス機を用いて作成

電線試料

工場で試作したケーブル (難燃ポリエチレンシースケーブル)

2-5. 実環境模擬試験(ヒートサイクル試験)

温度条件

−10 ℃ (1h) ⇔ **70 ℃** (1h)

サイクル数

シート試料:7条件(0~30サイクルまで5刻み) 電線試料:2条件(0、30サイクル)

それぞれ n=3 で実施

広角X線散乱(WAXS)、小角X線散乱(SAXS)、極小角X線散乱(USAXS)を実施₁₃

2-6. 放射光散乱測定の測定条件

ビームライン 実験内容・条件	AichiSR	BL8S3	SPring-8	BL19B2
実験内容	WAXS	SA	XS	USAXS
カメラ長	210 mm	6267 mm	3041 mm	40944 mm
X線エネルギー	13.5	keV	18	keV
検出器(ピクセル数、ピクセルサイズ)	PILA	TUS 2M (1475	5 × 1679、172 μ	m)
校正用試料	酸化セリウム	コラーゲン	ベヘン酸銀	コラーゲン
測定日(利用シフト)	11月 8日、 9 12月12日、13	日(4シフト) 日(4シフト)	11月24日	(2シフト)
露光時間	$60s\sim 240s$	$10 { m s} \sim 60 { m s}$	$10 { m s} \sim 60 { m s}$	$1\mathrm{s}\sim300\mathrm{s}$
試料設置	6連木人	ルダー	Humm	ingBird

2-7. 取得データの前処理

2-8. データの解析方法

先行研究

「USAXS、SAXS、WAXSを用いたポリエチレン階層構造に関する研究」を参考に実施 藤井澄明ほか、高分子論文集, Vol. 66, No. 12, pp. 612-618 (2009)

3. シート試料の分析結果 (LDPE、All)

3-1. WAXS (BL8S3)の測定結果

18

3-2. 結晶化度分析

シート試料の分析結果

結晶化度の算出方法

PE結晶由来のピーク面積 (ピーク1+ピーク2) PE由来のピーク面積 (ピーク1+ピーク2+ピーク3) × 100 = **結晶化度[%]**

2θ = 5° ~ 19° の範囲で Gaussフィッティング

3-3. 結晶化度分析 - 結果

LDPEの	結果							Allの結	課				
	n=1	n=2	n=3	結晶化度 平均 [%]	stdev.s	変化率 [%]	•		n=1	n=2	n=3	結晶化度 平均 [%]	9
0_cycle	40.47	40.33	40.32	40.4	0.0854	100.0		0_cycle	37.08	37.02	36.91	37.0	
5_cycle	41.52	41.45	41.32	41.4	0.0978	102.6		5_cycle	38.26	38.04	38.05	38.1	
10_cycle	41.65	41.52	41.56	41.6	0.0647	103.0		10_cycle	38.31	38.26	38.11	38.2	
15_cycle	41.62	41.67	41.65	41.6	0.0256	103.1		15_cycle	38.38	38.36	38.36	38.4	
20_cycle	41.75	41.61	41.66	41.7	0.0693	103.2		20_cycle	38.48	38.30	38.35	38.4	
25_cycle	41.79	41.75	41.67	41.7	0.0586	103.4		25_cycle	38.45	38.35	38.41	38.4	
30 cyclo	11 00	/1 72	11 76	/1 0	0 0083	102 5		30 ovelo	28 57	38 / 8	28.31	20 5	

全てのサンプルで結晶化度が上昇。

(特に0 ⇒ 5サイクルの上昇が顕著)

3-4. ピーク位置分析 - 結果

シート試料の分析結果

PE結晶由来のピーク位置に規則的な変化はなし

3-5. SAXS (BL19B2) の測定結果

シート試料の分析結果

3-6. 結晶-非晶ラメラ構造のドメイン間距離分析

シート試料の分析結果

3-6. 結晶-非晶ラメラ構造のドメイン間距離分析

シート試料の分析結果

試料へのヒートサイクル実施により

WAXS領域

結晶化度の変化(上昇)

SAXS領域

結晶・非晶ラメラ構造の相間距離Dの変化(減少)を確認

形状変化に 2つの領域が関与している ことを示唆

4. 電線試料の解析結果

配向性あり

方位角に対する散乱強度の分布

TOP、BOTTOMの ±5° で一次元化

WAXS領域

SAXS領域

·結晶化度分析

・結晶・非晶ラメラ構造の相間距離分析

シート試料と同じ条件で解析を実施

(電線試料のデータは当日限り)

5. まとめと今後について

まとめと今後について

実施したこと

- ✓ シート試料、電線試料に対して、実環境を模したヒートサイクル試験を行った
- ✓ 放射光のWAXS、SAXS、USAXS測定を行い、結晶化度分析、結晶/非晶相のドメイン 間距離分析、ギニエ解析などを行った。

電線試料

形状変化に

「結晶化度」「結晶・非晶間の距離変化」

が関わることを示唆

「**プロファイル変化**」は確認できるが・・

5-2. 今後について

課題

「プロファイルに **変化はあるが解析方法がわからない**」 箇所もいまだ多数

引き続きデータ解析方法について検討していきたい

今回の知見

✓ 絶縁材料の構造解析でも、放射光分析(散乱測定)は非常に有効

✓「大量のサンプルでデータを取得したい」(今回は延べ500以上)場合でも、 放射光分析は威力を発揮

今後は、放射光分析を製品開発にも応用していきたい

本研究の実施にあたり、ご協力いただいた以下の方々へ、 深く御礼申し上げます。

宮城県産業技術総合センター

- 曽根 宏 様 遠藤 崇正 様
- 伊藤 桂介 様

兵庫県立工業技術センター

鷲谷	洋彦	様
虫明	仁夢	様

あいちシンクロトロン光センター

野崎	彰子	様
神谷	和孝	様

高輝度光科学研究センター

上原	康	様
佐藤	眞直	様
大坂	恵一	様
桑本	滋生	様

参考サイト・参考文献

COMPLETE!!

参考サイト

「大型放射光施設 Spring-8」 <u>http://www.spring8.or.jp/ja/</u> 「あいちシンクロトロン光センター」 <u>http://www.aichisr.jp/</u>

参考書籍·文献

- 橋本 竹治(著)「X線・光・中性子散乱の原理と応用」 講談社
- •「X線散乱と放射光科学 基礎編」 菊田 惺志 (著) 東京大学出版会
- 松岡 秀樹, 日本結晶学会誌, 41, 2013-226 (1999)
- ・藤井 澄昭ほか, 高分子論文集, Vol. 66, No. 12, pp.612-618 (Dec., 2009)
- 三田 一樹ほか, 高分子論文集, Vol. 71, No. 11, pp.573-579 (Nov., 2014)
- ・ 竹中 幹人, 日本ゴム協会誌, Vol. 84, No. 1, pp. 7-13 (2011)
- Xiaoyun Li, et al., J. Appl. Polym. Sci., **2014**, 131, 39883

ご清聴ありがとうございました