

# 購買反応曲線とは

「購買反応曲線」とは、「消費者が商品を購入する場合、いくらなら購入する可能性が 高いか」という「消費者が最も受け入れやすい価格」を、「高すぎると思う価格」と「安 すぎると思う価格」の2つを聞いて明らかにする手法です。商品の価格を検討する際に、 「いくらで購入したいか」だけを質問すると、比較的安い価格の回答が集まりやすいため、 この手法が有効と考えられます。



#### 消費者が最も受け入れやすい価格

この手法は「消費者が商品の品質について判断を下すに十分な情報を持ち合わせていない」ことを大前提にして、以下の3つの仮説に基づいて計算されるもので、食品の価格に対する消費者意識にも妥当すると考えられています。

仮説1:消費者は、予算制約に基づくある上限価格を設定しており、それ以上の製品 は購入しない。

仮説2:消費者は、品質に対する不安によるある下限価格を設定しており、それ以下 の価格の商品は購入の対象としない。

仮説3:ランダムに選ばれた消費者が価格 x を安すぎるとする確率L(x), 高すぎると する確率H(x)とすると, 1-L(x)及びH(x)は, 累積対数正規分布で近似する ことができる。 仮説1と仮説2については理解しやすいと思いますが、仮説3については難解で、それ が妥当な仮説なのか、なぜそのような仮説が成り立つのか等については専門家に任せると して、我々は、その手法だけを利用することにします。

### 価格に関する調査

ある商品について,購買反応曲線を使って消費者が最も受け入れやすい価格を求めるた めには、まずは、消費者に対して、アンケート調査等により、その商品について「安すぎ て買わない価格」と「高すぎて買わない価格」を回答してもらうことからはじまります。 「安すぎて買わない価格」とは「安すぎて品質や出所に不安を感じる価格」であり、「高 すぎて買わない価格」とは「高すぎるから他のもので間に合わせる価格」とも言えます。

例 題

ある商品について10人の人に「安すぎて買わない価格」と「高すぎて買わない価格」 を答えてもらいました。

今回は例示なので、分かり易いよう100円単位の価格のデータとしましたが、実際のア ンケート調査の際には、1円単位までの具体的な金額を答えてもらって良いでしょう。

|    | А      | В    | С     | D | E | F |
|----|--------|------|-------|---|---|---|
| 1  | アンケート記 | 周査結果 |       |   |   |   |
|    |        | 安すぎる | 高すぎる  |   |   |   |
| 2  |        | 価格   | 価格    |   |   |   |
| 3  | 回答者 1  | 300  | 600   |   |   |   |
| 4  | 回答者 2  | 300  | 600   |   |   |   |
| 5  | 回答者3   | 400  | 600   |   |   |   |
| 6  | 回答者 4  | 300  | 500   |   |   |   |
| 7  | 回答者 5  | 600  | 800   |   |   |   |
| 8  | 回答者6   | 500  | 1,000 |   |   |   |
| 9  | 回答者 7  | 200  | 500   |   |   |   |
| 10 | 回答者 8  | 600  | 800   |   |   |   |
| 11 | 回答者 9  | 200  | 350   |   |   |   |
| 12 | 回答者10  | 400  | 700   |   |   |   |

# 購買反応曲線の計算

前述の仮説3に出てきた、価格xに対する「安すぎるとする確率L(x)」、「高すぎると する確率H(x)」が分かれば、それぞれの確率を1(100%)から差し引いた値が、「安す ぎるとも高すぎるとも思わない確率」と考えることができ、これが「購買反応曲線B(x)」 となります。

購買反応曲線: B(x) = 1 - L(x) - H(x)

### 1) L(x), H(x)の計算

それでは,「安すぎるとする確率L(x)」,「高すぎるとする確率H(x)」はどのように計算 すれば良いのでしょうか?

VI

ここで、仮説3には、「1-L(x)(以下、「L'(x)」と呼ぶ。)及びH(x)は、累積対数正 規分布で近似することができる。」とあります。つまり、アンケート調査等で求められた 「安すぎて買わない価格」と「高すぎて買わない価格」のデータをもとに、任意の価格 x について累積対数正規分布が計算できれば、価格 x に対する「安すぎるとする確率L(x)」、 「高すぎるとする確率H(x)」を推計することができることになります。

本来,累積対数正規分布の計算は非常に難しい計算になるのですが,幸い,Microsoft Excelに累積対数正規分布を計算する「LOGNORMDIST」関数がありますので,簡単に計算す ることができます。

【LOGNORMDIST関数】 説明: ×の対数正規分布の累積分布関数の値を返します。ln(x)は、引数平均と標準 偏差による正規型分布です。この関数は、対数的に変換されたデータを分析す る場合に使用します。 書式:LOGNORMDIST(<u>×</u>, 平均, 標準偏差) ↓ ↓ ↓ 財数に代入する値。 ↓ ln(x)の平均値。 ↓ ln(x)の標準偏差。

ここで注意が必要なのが、上記の説明で分かるように、LOGNORMDIST関数で使われるデ ータは生のデータではなく、それを対数的に変換されたデータになるということです。

つまり,アンケートで得られた「安すぎて買わない価格」と「高すぎて買わない価格」 のデータをそのまま使うのではなく,対数に変換した上で,その平均と標準偏差を計算す る必要があるということです。

#### 1対数への変換

「安すぎて買わない価格」,「高すぎて買わない価格」のデータを対数へ変換するには, Excelの「LN」関数を使います。

└→ 自然対数を求める正の実数。

|   | А      | В    | С    | D         | E         | F |
|---|--------|------|------|-----------|-----------|---|
| 1 | アンケート記 | 周査結果 |      |           |           |   |
|   |        | 安すぎる | 高すぎる | 安すぎる      | 高すぎる      |   |
| 2 |        | 価格   | 価格   | 価格の対数     | 価格の対数     |   |
| 3 | 回答者 1  | 300  | 600  | 5. 703782 | 6. 396930 |   |
| 4 | 回答者 2  | 300  | 600  | 5.7 3782  | 6.3 6930  |   |
| 5 | 回答者3   | 400  | 600  | =LN(B3)   | =LN(C3)   |   |
| 6 | 回答者 4  | 300  | 500  | 5. 703782 | 6.214608  |   |

| 7  | 回答者 5 | 600 | 800   | 6. 396930 | 6.684612 |  |
|----|-------|-----|-------|-----------|----------|--|
| 8  | 回答者6  | 500 | 1,000 | 6. 214608 | 6.907755 |  |
| 9  | 回答者 7 | 200 | 500   | 5. 298317 | 6.214608 |  |
| 10 | 回答者 8 | 600 | 800   | 6. 396930 | 6.684612 |  |
| 11 | 回答者 9 | 200 | 350   | 5. 298317 | 5.857933 |  |
| 12 | 回答者10 | 400 | 700   | 5.991465  | 6.551080 |  |

#### ②対数化したデータの平均、標準偏差の計算

①で対数化したデータの平均を計算するには、Excelの「AVERAGE」関数を、標準偏差 を計算するには、「STDEV」関数を使います。

【AVERAGE関数】
 説明:引数の算術平均値を返します。
 書式:AVERAGE (数値1,数値2,…)
 → 平均を求める数値,セル参照,又はセル範囲。
 → 平均を求める次の数値,セル参照,又はセル範囲(省略可能)。
 【STDEV関数】
 説明:引数を標本とみなし,標本に基づいて母集団の標準偏差の推定値を返します。
 書式:STDEV(数値1,数値2,…)
 → 母集団の標本に対応する数値,セル参照,又はセル範囲。
 → 母集団の標本に対応する次の数値,セル参照,又はセル範囲。

|    | А      | В    | С       | D           | E          | F       |
|----|--------|------|---------|-------------|------------|---------|
| 1  | アンケート記 | 周査結果 |         |             |            |         |
|    |        | 安すぎる | 高すぎる    | 安すぎる        | 高すぎる       |         |
| 2  |        | 価格   | 価格      | 価格の対数       | 価格の対数      |         |
| 3  | 回答者 1  | 300  | 600     | 5. 703782   | 6.396930   |         |
| 4  | 回答者 2  | 300  | 600     | 5. 703782   | 6.396930   |         |
| 5  | 回答者3   | 400  | 600     | 5. 991465   | 6.396930   |         |
| 6  | 回答者 4  | 300  | 500     | 5. 703782   | 6.214608   |         |
| 7  | 回答者 5  | 600  | 800     | 6. 396930   | 6.684612   |         |
| 8  | 回答者6   | 500  | 1,000   | 6. 214608   | 6.907755   |         |
| 9  | 回答者 7  | 200  | 500     | 5. 298317   | 6.214608   |         |
| 10 | 回答者 8  | 600  | 800     | 6. 396930   | 6. 684612  |         |
| 11 | 回答者 9  | 200  | =AVERAG | E(D3:D12) 7 | =AVERAGE ( | E3:E12) |
| 12 | 回答者10  | 400  | 700     | 5. §91465   | 6. j51080  |         |
| 13 |        |      | 平均      | 5.869938    | 6. 430600  |         |
| 14 |        |      | 標準偏差    | 0. 400014   | 0.297376   |         |

=STDEV (D3:D12)

=STDEV(E3:E12)

③L'(x), H(x), L(x)の計算

②で計算した「安すぎて買わない価格」,「高すぎて買わない価格」を対数化したデータの平均と標準偏差を利用して,LOGNORMDIST関数により,任意の価格 x に対するL'(x)とH(x)を求めます。

「任意の価格 x」では計算できないので、具体的な価格を指定して計算してみます。 例えば、価格 x を 0 ~1,000円の範囲で10円刻みに設定するなど、ExcelでA列に、計 算したい価格帯(アンケートで得られた「安すぎて買わない価格」の最小値から「高す ぎて買わない価格」の最大値までを含む価格帯が良い)の価格を1円刻み、10円刻み、 50円刻み、100円刻み等適当な刻みで並べて、B列、C列に、LOGNORMDIST関数を用いた いL'(x)の式と、H(x)の式を入力して、A列に並べた価格のL'(x)とH(x)を計算するよう にすれば良いでしょう。

当然,価格xをより細かい刻みに設定すれば,細かいL'(x),H(x)が計算できるので すが,その分,Excelの行数が多くなってしまいます。0~1,000円の間を1円刻みで設 定すれば,Excelの行は1,000行必要になってしまいます。

今回は、あまり行数が多くなりすぎないよう、x を1,000円までを50円刻みで設定して計算してみましょう。

なお,仮説3にあるように,累積対数正規分布で求められるのは,「L(x)」ではなく「1-L(x)」(=L'(x))であり,L(x)=1-L'(x)となりますので,ExcelのD列にL(x)の計算式を入力します。

|        | А              | В                 | С           | D                 | E         | F |
|--------|----------------|-------------------|-------------|-------------------|-----------|---|
| 11     | 回答者 9          | 200               | 350         | 5. 298317         | 5.857933  |   |
| 12     | 回答者10          | 400               | 700         | 5.991465          | 6. 551080 |   |
| 13     |                |                   | 平均          | 5.869938          | 6. 430600 |   |
| 14     |                |                   | 標準偏差        | 0. 400014         | 0. 297376 |   |
| 15     |                |                   |             |                   |           |   |
| 16     | 購買反応曲約         | <br>泉             |             |                   |           |   |
| 17     | x              | L'(x)             | H(x)        | L(x)              |           |   |
| 18     | 50             | 0. 000000         | 0.000000    | 1. 000000-        | =1-B18    |   |
| 19     | 100            | 0 0 0784          | 0.00 0000   | 0 999216          |           |   |
| =LOGN( | ORMDIST(A18, S | \$D\$13, \$D\$14) | =LOGNORMD15 | ST (A18, \$E\$13, | \$E\$14)  |   |
| 21     | 200            | 0.076502          | 0.000070    | 0. 923498         |           |   |
| 22     | 250            | 0. 191833         | 0.001117    | 0. 808167         |           |   |
| 23     | 300            | 0. 338934         | 0. 007261   | 0.661066          |           |   |
| 24     | 350            | 0. 488029         | 0. 027069   | 0. 511971         |           |   |
| 25     | 400            | 0. 619362         | 0. 069878   | 0. 380638         |           |   |
| 26     | 450            | 0. 725165         | 0. 139931   | 0. 274835         |           |   |
| 27     | 500            | 0.805559          | 0. 233819   | 0. 194441         |           |   |
| 28     | 550            | 0.864315          | 0. 342437   | 0. 135685         |           |   |
| 29     | 600            | 0. 906153         | 0. 454926   | 0. 093847         |           |   |
| 30     | 650            | 0. 935434         | 0. 561960   | 0.064566          |           |   |
| 31     | 700            | 0.955697          | 0.657315    | 0. 044303         |           |   |
| 32     | 750            | 0.969622          | 0. 737987   | 0. 030378         |           |   |
| 33     | 800            | 0.979156          | 0.803497    | 0. 020844         |           |   |
| 34     | 850            | 0.985671          | 0.854982    | 0.014329          |           |   |
| 35     | 900            | 0.990125          | 0.894397    | 0.009875          |           |   |
| 36     | 950            | 0. 993173         | 0. 923938   | 0. 006827         |           |   |
| 37     | 1,000          | 0.995263          | 0.945704    | 0.004737          |           |   |

### <u>2)B(x)の計算</u>

最後に、 E列に、前述したように、B(x) = 1 - L(x) - H(x)を計算すれば、購買反応曲線のデータの算出は完了です。

|    | А      | В         | С         | D         | Е         | F            |
|----|--------|-----------|-----------|-----------|-----------|--------------|
| 16 | 購買反応曲線 |           |           |           |           |              |
| 17 | x      | L'(x)     | H(x)      | L(x)      | B (x)     |              |
| 18 | 50     | 0.000000  | 0.000000  | 1.000000  | 0. 000000 | < =1-D18-C18 |
| 19 | 100    | 0.000784  | 0.000000  | 0.999216  | 0.000784  |              |
| 20 | 150    | 0.015850  | 0.000001  | 0. 984150 | 0.015849  |              |
| 21 | 200    | 0.076502  | 0.000070  | 0. 923498 | 0.076432  |              |
| 22 | 250    | 0. 191833 | 0.001117  | 0.808167  | 0. 190716 |              |
| 23 | 300    | 0. 338934 | 0.007261  | 0.661066  | 0.331673  |              |
| 24 | 350    | 0. 488029 | 0.027069  | 0. 511971 | 0. 460961 |              |
| 25 | 400    | 0. 619362 | 0.069878  | 0. 380638 | 0. 549485 |              |
| 26 | 450    | 0.725165  | 0. 139931 | 0. 274835 | 0.585233  |              |
| 27 | 500    | 0.805559  | 0. 233819 | 0. 194441 | 0.571739  |              |
| 28 | 550    | 0.864315  | 0.342437  | 0. 135685 | 0. 521878 |              |
| 29 | 600    | 0.906153  | 0. 454926 | 0. 093847 | 0. 451227 |              |
| 30 | 650    | 0. 935434 | 0.561960  | 0.064566  | 0.373474  |              |
| 31 | 700    | 0.955697  | 0.657315  | 0. 044303 | 0.298382  |              |
| 32 | 750    | 0.969622  | 0. 737987 | 0. 030378 | 0.231635  |              |
| 33 | 800    | 0.979156  | 0.803497  | 0. 020844 | 0.175659  |              |
| 34 | 850    | 0. 985671 | 0.854982  | 0.014329  | 0.130689  |              |
| 35 | 900    | 0.990125  | 0.894397  | 0.009875  | 0.095728  |              |
| 36 | 950    | 0. 993173 | 0. 923938 | 0.006827  | 0.069235  |              |
| 37 | 1,000  | 0. 995263 | 0.945704  | 0.004737  | 0.049559  |              |

# 購買反応曲線グラフの作成

### 1) グラフの作成

あとは価格 x を横軸にして, L(x), H(x), B(x)の「平滑線付きの散布図」のグラフを作 成すれば, 視覚的にわかりやすくなります。

前述のように、「安すぎるとする確率L(x)」、「高すぎるとする確率H(x)」を1(100%) から差し引いた値が、「安すぎるとも高すぎるとも思わない確率」と考えることができ、 これが「購買反応曲線B(x)」ですので、B(x)が最大になる価格が「安すぎるとも高すぎる とも思わない確率」が最大になる価格、すなわち、「消費者が最も受け入れやすい価格」 と読むことができます。



つまり、B(x)のグラフの頂点が消費者が最も受け入れやすい価格となります。

では、具体的に「消費者が最も受け入れやすい価格」がいくらなのかを調べてみます。

B(x)が最大となる x を求めればよいのですが,前述のB(x)を計算したExcelの表では, 価格 x を50円刻みで設定していますので、B(x)の計算値も、50円刻みにしかありません。 B(x)の最大値が必ずしも表で計算した50円刻みの値であるとは限りませんので、B(x)の最 大値をどうにかして計算しなければなりません。 そのやり方には2つの方法が考えられます。

### (1)1円刻みでB(x)を計算する方法

一つ目の方法は、B(x)を計算したExcelの表と同じように、B(x)の最大値付近の価格 帯(今回の場合は、上の表ではxが450円の時のB(x)が最大ですので、B(x)の最大値は その前後にあることになるため、400円~500円の範囲)でxを1円刻みで設定してB(x) を計算する表を作る方法です。こうすれば、B(x)が最大になる価格 x 値を調べることは できます。

ただし、新たに表を作らなければならないので、若干面倒です。

|     | А   | В         | С         | D         | E         | F |
|-----|-----|-----------|-----------|-----------|-----------|---|
| :   | ÷   | ÷         | ÷         | :         | ÷         |   |
| 95  | 456 | 0.736099  | 0. 150081 | 0. 263901 | 0.586019  |   |
| 96  | 457 | 0.737886  | 0. 151806 | 0. 262114 | 0. 586081 |   |
| 97  | 458 | 0. 739663 | 0. 153540 | 0. 260337 | 0. 586123 |   |
| 98  | 459 | 0. 741429 | 0. 155283 | 0. 258571 | 0. 586147 |   |
| 99  | 460 | 0. 743186 | 0. 157035 | 0. 256814 | 0. 586151 |   |
| 100 | 461 | 0.744933  | 0. 158797 | 0. 255067 | 0.586136  |   |
| 101 | 462 | 0.746669  | 0. 160567 | 0. 253331 | 0.586102  |   |
| 102 | 463 | 0.748396  | 0. 162347 | 0. 251604 | 0.586049  |   |
| 103 | 464 | 0. 750112 | 0.164135  | 0. 249888 | 0.585977  |   |
| :   | :   | :         | :         | :         | :         |   |

### ②「ソルバー」アドインを利用する方法

二つ目の方法が, Excelのアドインである「ソルバー」を使用する方法です。 「ソルバー」を使えば, 簡単な設定だけで新たな作表や計算作業をすることなく, B(x)が 最大になる時の価格 x の値を正確に計算できますので, 非常に便利です。

 【ソルバー】
 Microsoft Excelのアドインで、複数の変数を含む数式において、目標とする値を 得るための、最適な変数の値を求めることができる機能です。
 ソルバーでは、複数の変数の値を変化させながら変数の相互関係を判断し、最適な 値を算出することができ、ある変数に特定の制約条件をつけたり、あるいは特定の変 数が最大値・最小値を得るために他の変数の値を変化させたりすることもできます。
 ソルバーを用いれば、連立方程式の解や、複数の項目が連動する事業計画の試算といった複雑な演算ができます。

Excelに「ソルバー」アドインが組み込まれていれば、「データ」メニューの中に「ソ ルバー」というメニューがあるので、「ソルバー」アドインを実行します。

「ソルバー」を実行すると、「パラメータ設定」画面が表示されます。

この「パラメータ設定」画面では、今回の目的はB(x)の値が最大になる時のxの値を 求めたい訳ですから、まず、「目的セル(<u>E</u>)」には、前述のB(x)を計算した表で、B(x)の 列のセルの中から、どれか1つ指定します。

指定するB(x)のセルは、どのセルでも構いませんが、B(x)の値が0のセルを指定すると うまく計算できないようですので、B(x)の値が0以外のセルを指定するようにして ください。

次に,「目標値:」の項目は, B(x)を最大にしたい訳ですから,「最大値(<u>M</u>)」の前の ラジオボタン(○印)をクリックして選択します。

そして、「変化させるセル(<u>B</u>)」に、「目的セル(<u>E</u>)」に指定したB(x)のセルと同じ行のxの列のセルを指定します。

目的セル(E): B(x)を計算した表のB(x)のセルの中からどれか1つ指定目的値:「最大値(M)」を選択変化させるセル(B): 目的セル(E)に指定したB(x)のセルと同じ行の x のセルを指定

B(x)を計算した表で、最もB(x)の値が大きかったxが450円の行を使って設定する場合は、「目的セル(E)」にE26セルを、「変化させるセル(B)」にA26セルを指定します。

あとは、「実行(<u>S</u>)」ボタンをクリックすれば、「目的セル(<u>E</u>)」に指定したB(x)のセルの値がB(x)の最大値に変わり、「変化させるセル(<u>B</u>)」に指定したxのセルの値が、B(x)が最大値になるxの値に変わります。

| 23<br>24<br>25<br>26<br>27 | 300<br>350<br>400<br>450<br>500              | 0. 338934<br>0. 488029<br>0. 619362<br>0. 725165<br>0. 805559 | 0. 007261<br>0. 027069<br>0. 069878<br>0. 139931<br>0. 233819 | 0. 661066<br>0. 511971<br>0. 380638<br>0. 274835<br>0. 194441 | 0. 331673<br>0. 460961<br>0. 549485<br>0. 585233<br>0. 571739 |                                     |
|----------------------------|----------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------|
| וע                         | いくー・パラメータ                                    | 9設定                                                           |                                                               |                                                               |                                                               | 2                                   |
| 目                          | 的セル(E):<br>標値:  ③最7<br>S化をせるセル( <u>B</u> ):- | \$E\$26<br>大値( <u>M</u> ) 〇 最                                 | ▲値(N) ○ f                                                     | ₫( <u>V</u> ):<br>0                                           |                                                               | <u>実行(S)</u><br>閉じる                 |
| \$<br>制                    | A\$26<br>胎条件( <u>U</u> )                     |                                                               |                                                               | istn(A                                                        |                                                               | オプション( <u>0</u> )                   |
|                            |                                              |                                                               |                                                               | <u>変更(0</u>                                                   |                                                               | リセット( <u>B</u> )<br>ヘルプ( <u>H</u> ) |
|                            |                                              |                                                               | Ţ                                                             |                                                               |                                                               |                                     |

| 23 | 300      | 0. 338934 | 0.007261  | 0.661066  | 0.331673 |  |
|----|----------|-----------|-----------|-----------|----------|--|
| 24 | 350      | 0. 488029 | 0. 027069 | 0. 511971 | 0.460961 |  |
| 25 | 400      | 0. 619362 | 0.069878  | 0. 380638 | 0.549485 |  |
| 26 | 459.7163 | 0.725165  | 0. 139931 | 0. 274835 | 0.586152 |  |
| 27 | 500      | 0.805559  | 0. 233819 | 0. 194441 | 0.571739 |  |
| 28 | 550      | 0.864315  | 0.342437  | 0. 135685 | 0.521878 |  |
| 29 | 600      | 0.906153  | 0.454926  | 0.093847  | 0.451227 |  |

上の場合は, B(x)の最大値が0.586152で, その時のxの値は459.7163になりますので, 購買反応曲線による「消費者が最も受け入れやすい価格」は460円ということになりま す。

〈引用文献〉

 ・下山禎(1998)『農産物価格に対する消費者意識の購買反応曲線による分析』農業経営通信 198:22-25

# 《事例》ジャムの購買反応曲線

過去に調査した事例を紹介します。

農産加工品であるジャムを対象に、パッケージ改良前の商品、パッケージを改良した試 作品、試作品の評価を受けて改良した完成品の3種類について、それぞれ首都圏の一般消 費者の方を対象にホームユーステストを行い、『高すぎて買えない価格』と『安すぎて買 えない価格』から『最も受け入れやすい価格』を割り出しました。商品の中身は3種類と も同じです。

『最も受け入れやすい価格』は、改良前の商品は1個350円だったのに対し、試作品は3 80円、完成品は440円という結果となりました。パッケージを改良したことで、商品価値 が90円上がったことがわかりました。



