指標線量率の温度依存性の解消に向けた検討

木村幸由*1、武藤儀一*2、高群富貴、新井康史、杉山照徳*3、長谷部洋*4

宮城県では、女川原子力発電所からの予期せぬ放射性物質の放出の有無を監視するため、 NaI(T1)シンチレーション式検出器により測定された空間ガンマ線スペクトル(以下「スペ クトル」という。)を解析することにより指標線量率を算出しているが、近年は夏期の高温 環境下で指標線量率が変動する事象が発生していた。一般に、NaI(T1)シンチレーション式 検出器の検出部(以下「検出部」という。)には温度依存性があり、温度が変動するとゲイ ン(増幅度)が変動し、スペクトルがドリフトすることが知られている。そこで、本県では 恒温制御装置により、年間を通して検出部の温度を28℃に保つ設定としている。しかし、高 温環境下で指標線量率が変動する要因を調査したところ、指標線量率が変動している時には 検出部の温度が上昇し、それに伴いスペクトルがドリフトしていることが判明した。そこ で、10分毎にスペクトルのエネルギー校正を行う方法で指標線量率を算出したところ、検出 部温度に依存した指標線量率の変動を解消することができた。

1 はじめに

宮城県では、女川原子力発電所からの予期せぬ放射性物質の放出の有無を監視するため、NaI(T1)シ ンチレーション式検出器により測定されたスペクトルを解析することにより指標線量率を算出してい る。指標線量率とは、スペクトルを凑らが開発したレスポンスマトリクス(応答行列:以下「RM」とい う。)法¹⁾で処理して得られる全線量率から天然放射性核種寄与分の線量率を差し引いて得られる値で、 人工放射性核種寄与分のガンマ線の影響を示す指標である²⁾³⁾。しかし、近年は夏期の高温環境下で指 標線量率が変動する事象が発生していた。

一般的に NaI (T1)シンチレーション式検出器の構成部品である光電子増倍管等の電子回路部品には温 度依存性があることが知られており⁴、放射能測定法シリーズ No. 20「空間 y 線スペクトル測定法」に おいても検出部の温度上昇の防止と保温対策の重要性が説明されている⁵⁰。そこで、本県では図1のよ うにモニタリングステーションの NaI (T1)シンチレーション式検出器のカバーを二重構造とするととも に恒温制御装置により、年間を通して検出部の温度を28℃に保つ設定としている。具体的な制御方法は、 検出部が高温となる場合には、エアコンにより冷却されたモニタリングステーション内の空気を NaI (T1)シンチレーション式検出器のカバー内側へ送風することで検出部を冷却し、逆に検出部が低温 となる場合には、検出部の根元を囲うように取り付けているヒーターにより検出部を加温するというも のである。仮に、NaI (T1)シンチレーション式検出器に恒温制御装置がない場合は、ゲインが変動しスペ クトルがドリフトすることになる。実際、過去に本県で NaI (T1)シンチレーション式検出器が内蔵され た可搬型モニタリングポストによって空間ガンマ線量率を測定していた際は、検出部温度が一定ではな かったために、スペクトルからG (E) 関数法により得られる空間ガンマ線量率が検出部温度とともに変 動していた⁶⁰⁷。

*1 現 宮城県保健環境センター *2 ミリオンテクノロジーズ・キャンベラ株式会社

*3 現 宮城県環境生活部廃棄物対策課 *4 現 宮城県復興·危機管理部原子力安全対策課

このことから、高温環境下では検出部温度が変動することで指標線量率が影響を受けている可能性が 考えられた。しかし、これまでに検出器更新や校正等のタイミングでスペクトルがドリフトした場合は 指標線量率に影響が生じるという知見³⁾はあるものの、検出部温度と指標線量率の関係について調査さ れた例はない。そこで、今回高温環境下で指標線量率が変動する原因について調査を行うとともに、検 出部温度に依存した指標線量率の変動を解消する方法を検討した。

図1 検出部温度の制御に関する装置の概要図

2 方法

2.1 検出部温度と指標線量率の関係

2023 年 7 月 25 日 0 時 0 分から 8 月 10 日 0 時 0 分までの検出部温度と本県が主に監視に用いている 22 行×22 列の RM 法¹¹により算出した指標線量率の時系列図と相関図を作成し、両者の関係を調べた。

なお、調査には本県のモニタリングステーション7局のうち、見かけ上で最も指標線量率の変動が大 きかった鮫浦局のデータを用いた。

2.2 検出部温度の変動とスペクトルのドリフトの関係

2023 年 7 月 25 日 0 時 0 分から 8 月 10 日 0 時 0 分までの鮫浦局のスペクトル (144 個/日、合計 2,305 個) について、K-40 の光電ピーク (1,461 keV) を含む可能性がある 113 ch から 119 ch までのうち最 も計数が大きかったチャンネルを求め、検出部温度との時系列図と相関図を作成した。ただし、1 ch の エネルギー幅は 12.5 keV であり、連続する 2 つ以上のチャンネルで同じ計数である場合は、チャンネ ルの平均値を求めた。また、参考として当該期間中に検出部温度が最大となった日時とその日の早朝で 検出部温度が最低となった時刻のスペクトルを比較した。

2.3 スペクトルのドリフトが指標線量率に与える影響

スペクトルがドリフトした場合に、RM 法で得られる全線量率と天然放射性核種寄与分の線量率に与え る影響を調査するため、模擬スペクトルを用いてシミュレーションを行った。まず、スペクトルのエネ ルギー校正式の一次係数を変えて疑似的にピークドリフトを起こした。その後、ピークが BIN からずれ た状態で RM 法により解析し、ピークドリフトが全線量率と天然放射性核種寄与分の線量率に与える影 響を確認した。

なお、本解析結果はミリオンテクノロジーズ・キャンベラ株式会社から本県に提供されたものである。

2.4 検出部温度とエネルギー校正を行ったスペクトルから算出される指標線量率

本県では、2020年度に放射性セシウムの寄与分の線量率を求める目的で、女川原子力発電所周辺環境 放射線監視システムに放射線地学研究所の湊が開発した49行×49列のRM法⁸によって指標線量率を算 出するプログラムを導入した。49行×49列のRM法は、22行×22列のRM法に比べてエネルギーの幅 (BIN)が狭く、スペクトルがドリフトした場合の影響が大きいため、当該プログラムはこれまで22行× 22列のRM法のために用いてきたプログラムとは異なり、10分毎に得られるスペクトルについて都度 K-40のピークサーチを行い、エネルギー校正を行った後に指標線量率を算出するプログラムとなってい る⁹。そこで、2023年7月25日0時0分から8月10日0時0分までの検出部温度と49行×49列のRM 法により算出した指標線量率の相関図を作成し、両者の関係を調べた。

2.5 検出部温度の上昇防止対策

NaI(T1)シンチレーション式検出器に恒温制御装置が併設されているにも関わらず、検出部の温度が 上昇する原因を調査するために、2023年9月1日に鮫浦局屋上の温度を非接触型温度計(株式会社 ICST 製 DT-103)により測定した。

3 結果

3.1 検出部温度と指標線量率の関係

2023年7月25日0時0分から8月10日0時0分までの鮫浦局における検出部温度と22行×22列の RM法により算出した指標線量率の時系列図を作成したところ、当該期間中は日中に検出部温度が上昇し ていた(図2)。3か月毎にNaI(T1)シンチレーション式検出器を含む放射線測定装置の製造業者による 定期点検を受けているが、当該期間の前後に製造業者が行った定期点検ではNaI(T1)シンチレーション 式検出器や恒温制御装置に異常はなかったことから、夏期の高温環境下では恒温制御装置によって検出 部の温度上昇を防止できなかったものと推定された。

また、日中に検出部温度が上昇している時には、指標線量率が低下しているように見受けられたことから、検出部温度と22行×22列のRM法により算出した指標線量率の相関図を作成したところ、両者は 負の相関にあることが判明した(図3)。

図2 鮫浦局における検出部温度と22行×22列のRM法により算出した指標線量率の時系列図

図3 鮫浦局における検出部温度と22行×22列のRM法により算出した指標線量率の相関図

3.2 検出部温度の変動とスペクトルのドリフトの関係

2023 年 7 月 25 日 0 時 0 分から 8 月 10 日 0 時 0 分までの鮫浦局のスペクトル (144 個/日、合計 2,305 個) について、K-40 の光電ピーク (1,461 keV) を含む可能性がある 113 ch から 119 ch までのうち最 も計数が大きかったチャンネルを求め、検出部温度との時系列図 (図 4) と相関図 (図 5) を作成した。

なお、本県で用いている NaI (T1) シンチレーション式検出器で測定されるスペクトルは1 ch が5 keV に相当するが、図4及び図5においてはデータ処理の都合から1 ch あたり 12.5 keV に圧縮したデータ を用いた。

その結果、図 5 のとおり検出部温度と K-40 の光電ピークチャンネルの間には負の相関が認められ、 検出部温度が上昇していたときには、スペクトルが低エネルギー側にドリフトしていたことが判明した。 参考として記載するが、当該期間中で鮫浦局における検出部温度が最も高くなった日時は 2023 年 8 月 4 日 15 時 30 分の 38.9℃であり、2023 年 8 月 4 日の早朝で最も検出部温度が低かった時刻は 4 時 50 分 の 31.1℃であった。そして、両時刻におけるスペクトルを比較したところ、K-40 の光電ピークチャンネ ルが、4 時 50 分では 115 ch であるが、15 時 30 分では 113 ch にドリフトしていた(図 6)。

なお、図6においては1 ch あたり 12.5 keV に圧縮したデータを用いた。

図4 鮫浦局における検出部温度とK-40 ピークチャンネルの時系列図

100 chから130 chまでの拡大図

図6 鮫浦局における 2023 年8月4日4時 50 分と15時 30 分のスペクトルの比較

3.3 スペクトルのドリフトが指標線量率に与える影響

スペクトルのドリフトが、指標線量率にどのような影響を与えるかを調査するため、まず、図7の ようなスペクトルに対し、エネルギー校正式(1)の一次係数を変えて疑似的にドリフトを起こした。 なお、この調査では1 ch が5 keV に相当するスペクトルを用いた。

図7 調査に用いたスペクトル

エネルギー校正式 (1)
y = A + Bx
ここで、
y : エネルギー(keV)
x : チャンネル(ch)
A : 定数(元の値: 2.3036)
B : 一次係数(元の値: 4.9605)

エネルギー校正式(1)の一次係数Bを 0.1 間隔で増減させ、5.1605、5.0605、4.9605(元の値)、 4.8605、4.7605と変化させた。疑似的にドリフトを起こした結果をK-40のピークを例に図8に示 す。そして、疑似的にドリフトを起こしたスペクトルに対して、22行×22列のRM法により解析を 行い、全線量率、K-40の直接線の線量率、ウラン系列の直接線の線量率、トリウム系列の直接線の 線量率及び天然核種の直接線の線量率合計を求めた(表1)。表1を見ると、スペクトルのドリフト により、全線量率と天然放射性核種寄与分の直接線の線量率が影響を受けていることが分かる。天 然放射性核種寄与分の直接線の線量率から散乱線を含む天然放射性核種寄与分の線量率を算出する ための偏回帰係数は日ごとに一定の値であるため、天然放射性核種寄与分の直接線の線量率が影響 を受けると、天然放射性核種寄与分の線量率が影響を受けることになる。このように、スペクトル がドリフトすると、指標線量率の算出過程において、全線量率と天然放射性核種寄与分の線量率に 影響が生じるため、スペクトルのドリフトを防ぐか、ドリフトが生じた場合はその都度エネルギー 校正することが重要であると言える。

図8 疑似的にドリフトを起こした結果

表1 疑似的にドリフトを起こしたスペクトルに対しての22行×22列のRM法による解析結果

一次係数	K40ピーク	RM合計	₩10約昌來	山玄別始昌玄	Th系列	天然成分の合
	中心(CH)	線量率	1140 秋 里 平	し木列脉里牟	線量率	計系列線量率
5.1605	281	29.92	4.35	7.93	4.83	17.1
5.0605	287	30.66	7.03	9.27	6.95	23.26
4.9605	294	31.44	8.36	9.92	7.66	25.94
4.8605	300	32.26	8.52	10.38	7.13	26.03
4.7605	306	33.18	7.32	9.38	3.39	20.1

線量率の単位:nGy/h

3.4 検出部温度とエネルギー校正を行ったスペクトルから算出される指標線量率

本県が試験的に導入している 49 行×49 列の RM 法による解析プログラムでは、10 分毎に得られるスペクトルについて都度 K-40 のピークサーチを行い、エネルギー校正を行った後に指標線量率を算出している⁹⁰。そこで、2.1 と同様に 2023 年 7 月 25 日 0 時 0 分から 8 月 10 日 0 時 0 分までの鮫浦局における検出部温度と 49 行×49 列の RM 法により算出した指標線量率の時系列図(図 9)と相関図(図 10)を作成したところ、図 10 のとおり検出部温度に依存した指標線量率の変動を解消することができた。このことから、スペクトルのドリフトに起因する指標線量率の変動に対しては、都度エネルギー校正を行うことが有効であるということが示された。

図9 鮫浦局における検出部温度と49行×49列のRM法により算出した指標線量率の時系列図

図 10 鮫浦局における検出部温度と 49 行×49 列の RM 法により算出した指標線量率の相関図

3.5 検出部温度の上昇防止対策

NaI(T1)シンチレーション式検出器に恒温制御装置が併設されているにも関わらず検出部の温度が上 昇する原因を調査するために、2023 年 9 月 1 日 13 時 35 分から 13 時 40 分までの間に、鮫浦局の屋根 の温度を非接触型温度計(株式会社 ICST 製 DT-103)により測定した。 なお、この日の天候は晴天で、鮫浦局では気温を測定していないものの、女川局で測定している気 温は 13 時 40 分の時点で 29. 3℃であった。

屋根の温度を測定した際の写真を図 11 に示すが、鮫浦局の屋根のうち直射日光が当たっている場所 の表面温度は 55℃前後の高温であった。写真右側は、NaI (T1) シンチレーション式検出器に近い位置で 測定したものであるが、13 時 38 分に測定したときの表面温度は 55.6℃であった。

図11 鮫浦局屋上の様子

このことから、高温となった屋根から検出部へ熱伝導することが、検出部の温度上昇に寄与している 可能性が考えられる。そこで、屋根から検出部への熱伝導を防ぐ目的で、検出器の架台と局舎の屋根と の間に断熱材を挟むことを検討した。しかし、NaI(T1)シンチレーション式検出器を含むモニタリング に係る各種設備機器については、2016年7月に原子力規制庁が制定したモニタリングに係る設備機器の 耐震安全性に関するガイドライン¹⁰に基づき耐震 S クラスに適合するように設計及び施工しなければ ならず、検出器の架台と局舎の屋根との間に断熱材を挟むことで耐震 S クラス不適合となることから、 検出器の架台と局舎の屋根との間に断熱材を挟むことを断念した。この他に屋根の温度上昇を抑制する 方法として屋根全体に遮熱塗料を塗布するといった方法も考えられるため、塗料の耐久性や費用対効果 を含めて、今後の検討課題とする。

4 考察

今回の調査により、スペクトルのドリフトに起因する指標線量率の変動に対しては、都度エネルギー校正を行うことが有効であるということが示された。現在、主に監視に用いている 22 行×22 列の RM 法により指標線量率を算出するプログラムにも、都度エネルギー校正を行うプログラムを加えるこ とで、検出部温度の変動に依存した指標線量率の変動を防止することができ、監視能力の向上につな がると期待される。また、指標線量率の算出過程における全線量率や天然放射性核種寄与分の線量率 に対しても、検出部温度の変動に依存した変動を防止することができることは、環境放射線・放射能 をモニタリングする上で大きな意義があり、例えば以下に挙げる事項の調査に応用できる。

① 空間ガンマ線量率の周期的な変動の要因

空間ガンマ線量率が周期的に変動する要因は、以下のようなものがある。

- ・大気中のラドン子孫核種の濃度の変動
- 変動の周期:日単位
- ・モニタリングステーション周辺への駐車の増減

変動の周期:日単位、週単位

1つ目の大気中のラドン子孫核種の濃度の変動については、大気が安定する夜間から朝方にか けて空間ガンマ線量率が上昇するため¹¹⁾、検出部の温度変動による空間ガンマ線量率の変動⁴⁾と 上下が一致する。しかし、検出部温度の変動による影響を解消することができれば、大気中のラ ドン子孫核種の濃度の変動による影響を精度よく評価できるようになると思われる。

2つ目のモニタリングステーション周辺への駐車の増減については、日中に駐車台数が増える ことが多いため、土壌に含まれる天然放射性核種からの放射線が車体によって遮へいされる影響 で、日中は線量率が低下することになるが、検出部温度の変動による影響を解消した後のK-40の 線量率の変動を見ることで駐車による影響を評価できるようになると思われる。

② ウラン系列の直接線の線量率とダストモニタで測定される放射能濃度又は計数率との関係 過去に報告されているとおり、放射能濃度の測定値には主に大気中のラドン及びその子孫核種 の濃度が寄与していると推定されている¹²⁾。そこで、検出部温度の変動による影響を解消した後 のウラン系列の直接線の線量率とダストモニタによって測定される放射能濃度又は計数率との関 連を調べることで両者の関係を詳細に解析でき、本県のダストモニタで測定される放射能濃度及 び計数率の傾向を把握することに役立つものと思われる。

5 まとめ

夏期の高温環境下で指標線量率が変動する事象が発生していたが、今回の調査により、検出部の温 度が上昇することに伴い、スペクトルがドリフトしていることが原因であると判明した。そこで、10 分毎にスペクトルのエネルギー校正を行う方法で指標線量率を算出したところ、検出部温度に依存し た指標線量率の変動を解消することができた。今後、主に監視に用いている22行×22列のRM法によ り指標線量率を算出するプログラムにも都度エネルギー校正を行う機能を加えることで、環境放射 線・放射能の変動の要因をより詳細に解析し、監視能力の向上につながることが期待される。

謝辞

指標線量率に精通し丁寧なご指導とご助言を賜わりました元当センター職員(元宮城県原子力セン ター所長)の石川陽一先生に深く感謝の意を表します。

6 参考文献

- (T1) 決進、環境 γ 線解析用 3"×3" NaI (T1) シンチレータのレスポンス行列、名古屋工業技術試験所報告、27、p. 384-397、1978
- 2)今野達矢、木立博、石川陽一、加賀谷秀樹、レスポンスマトリクス法を活用した人工放射線寄与線 量率の測定に関する検討、宮城県原子力センター年報、第19巻、p.46-52、2001、 URL: https://www.pref.miyagi.jp/soshiki/kankyoho/intro.html
- 3) 木立博、今野達矢、石川陽一、佐々木俊行、レスポンスマトリクス法を活用した人工放射線寄与線量 率の測定に関する検討(2)、宮城県原子力センター年報、第20巻、p. 18-32、2002、URL: 2)に同じ
- 4) 湊進、SCS-0065、NaI (T1) 検出器の温度特性(備忘録)、2010、放射線地学研究所(放地研)ホームページ、放地研特別寄稿シリーズ、

URL: http://www1.s3.starcat.ne.jp/reslnote/

- 5) 文部科学省、放射能測定法シリーズ No. 20 空間 y 線スペクトル測定法、1990 年 2 月制定、 URL: https://www.kankyo-hoshano.go.jp/library/series/
- 6) 新井康史、安藤孝志、石川陽一、可搬型モニタリングポストによる空間ガンマ線線量率の測定について、宮城県原子力センター年報、第29巻、p.30-32、2011、URL: 2)に同じ
- 7)木村幸由、吉田直人、木村昭裕、佐藤健一、藤原秀一、可搬型モニタリングポストによる空間ガン マ線線量率測定値の温度依存性、宮城県原子力センター年報、第31巻、p.11-18、2013、URL:2)に 同じ
- 8) 湊進、SCS-0108、環境ガンマ線解析用 49×49 応答行列の紹介、2015、放射線地学研究所(放地研) ホームページ、放地研基本文献、応答行列(49×49)、URL: 4)に同じ
- 9) ミリオンテクノロジーズ・キャンベラ株式会社、空間線量管理センタープログラム 49×49 応答関数 への対応と有効性の評価、2022
- 10) 原子力規制庁、モニタリングに係る設備機器の耐震安全性に関するガイドライン、2016年7月策定
- 11) 木立博、今野達矢、石川陽一、加賀谷秀樹、牡鹿半島における空間ガンマ線線量率とラドン濃度の 関係について、宮城県原子力センター年報、第19巻、p.5-9、2001、URL: 2) に同じ
- 12) 石川陽一、木村幸由、連続式全アルファ・全ベータ線ダストモニタで観測される計数率変動と主な 寄与放射性核種、宮城県環境放射線監視センター年報、第7巻、p. 19-30、2021、URL: 2) に同じ

空間放射線量率の調査レベルの設定について

新井康史、木村幸由¹、高群富貴、杉山照徳²、長谷部洋³

当センターでは、東京電力(株)福島第一原子力発電所事故(以下「福島第一原発事故」 という。)の影響により空間放射線量率のバックグラウンドレベルが上昇したことを受け、 調査レベルの設定方法を暫定的に変更し、女川原子力発電所からの予期せぬ放射性物質の 放出の有無を監視してきたところである。近年では、空間放射線量率の推移が横ばいにな っていることから、福島第一原発事故前と同様に、過去2年度の平均値及び標準偏差を適 用することが適切であるとの結果が得られた。

I はじめに

平常時モニタリングにおいて、モニタリングポスト等から経時的に得られる測定値のように、適切に管理された測定条件の下で有意な測定値が多数得られた場合には、この測定値を統計処理し、過去数年間の測定値の平均値±(3×標準偏差)を平常の変動幅として設定することとされている¹⁾。本県では福島第一原発事故前まで、「前2年度の測定値の平均値+前2年度の標準偏差の3倍」を調査レベルとして設定し、超過した場合には、より詳細な確認を行うこととしてきた。

しかし、福島第一原発事故で放出された放射性セシウムの影響により空間放射線量率の バックグラウンドレベルが上昇し、その後、物理的半減期やウェザリングによって減衰し たため、従来の調査レベル設定方法では、適切な監視ができない状況となった。そのため、 表1のように調査レベルの設定方法を適宜見直し、2016年度以降は、「前年度の平均値+前 年度の標準偏差の3倍」を調査レベルとして設定している²⁾。近年では、図1に示すように 空間放射線量率の減衰の程度が緩やかになってきたことから、福島第一原発事故前と同様 の設定方法とできるか検討した。

年度	設定頻度	設定方法
2010年度以前	年度毎	前2年度平均値+前2年度標準偏差の3倍
2011、2012 年度	月毎	前月平均値+2008、2009年度標準偏差の2倍
2013、2014年度	四半期毎	前四半期平均値+前四半期標準偏差の2倍
2015 年度	四半期毎	前2四半期平均値+前2四半期標準偏差の3倍
2016年度以降	年度毎	前年度平均値+前年度標準偏差の3倍

表1 調査レベルの設定方法の推移

1 現 宮城県保健環境センター

2 現 宮城県環境生活部廃棄物対策課

3 現 宮城県復興·危機管理部原子力安全対策課

図1 電離箱検出器による空間放射線量率(小屋取局、年度最頻値)の推移 (2023年度分は4月から12月までの測定値を使用)

Ⅱ 調査レベルの設定方法の検討について

調査レベル設定値の傾向を確認するため、福島第一原発事故前の算出方式である「前2 年度の測定値の平均値+前2年度の標準偏差の3倍」による値を県で設置したモニタリン グステーション7局で試算し、現在の算出方式である「前年度の平均値+前年度の標準偏 差の3倍」による値と比較した。試算にあたっては、モニタリングステーション7局のう ち4局を再建した2019年度の測定値から用いることとし、2023年度の測定値は2023年12 月までの測定値を用いた。

まず、「前年度の平均値+前年度の標準偏差の3倍」で算出した7局の平均値を表2に示 す。2022年度適用分までは減少傾向が見られたが、2023年度及び2024年度適用分は横ば い傾向が見られた。また、2022年度と2023年度のように平均値は同じであっても標準偏差 の差により調査レベルが上昇することも確認できた。

次に、「前2年度の測定値の平均値+前2年度の標準偏差の3倍」で算出した7局の平均 値を表3に示す。カッコ内の数字は、現在の方式で算出した値との差分を示しており、2023 年度及び2024年度適用分については、現在の算出方式よりも調査レベルが低下することが 確認できた。

表2 前年度平均値及び前年度標準偏差を用いた調査レベルの推移(県7局の平均値)

適用年度	2020	2021	2022	2023	2024
前年度平均值	45.0	45.0	44.6	44.6	44.9
標準偏差×3	7.1	6.7	6.4	6.8	7.2
調査レベル	52.1	51.7	51.0	51.4	52.1

表3 過去2年度平均値及び過去2年度標準偏差を用いた調査レベルの推移(県7局の平均値)

適用年度	2021	2022	2023	2024
過去2年度平均値	45.0(±0)	44.8(+ 0.2)	44.6(± 0)	44.7(- 0.2)
標準偏差×3	6.8(+ 0.1)	6.5(+ 0.1)	6.6(-0.2)	7.0(- 0.2)
調査レベル	51.8(+ 0.1)	51.3(+ 0.3)	51.2(- 0.2)	51.7(- 0.4)

※カッコ内の数字は、現在の方式で算出した値との差分

さらに、2023 年 4 月から 12 月までの測定値(10 分値)に対して、現在の調査レベルと 福島第一原発事故前の方式で算出した調査レベルをそれぞれ適用し、超過数及び超過割合 を比較した。超過割合は、試算期間中の測定値数に対する調査レベルの超過数の割合であ る。

調査レベル設定値、超過数及び超過割合の試算結果を表 4 に示す。カッコ内の数字は、 現在の方式で算出した値との差分を示しており、寄磯局を除く 6 局では調査レベルが低下 し、超過数が増加することが確認できた。

調査レベルを超過した場合にはより詳細な調査を行うことから、福島第一原発事故前の 算出方式である「前2年度の測定値の平均値+前2年度の標準偏差の3倍」による調査レ ベルの設定に戻すことにより、より厳しい監視体制となることが確認できた。

測定局	調査レベル(nGy/h)	超過数(個)	超過割合(%)
女川	36.4(- 0.3)	1056 (+ 70)	2.67(+ 0.18)
飯子浜	49.2(- 0.1)	1111 (+ 29)	2.81(+ 0.08)
小屋取	55.7(- 0.1)	911 (+ 27)	2.30(+ 0.07)
寄磯	42.7(± 0)	$888(\pm 0)$	$2.24(\pm 0)$
鮫浦	57.7(- 0.1)	1058 (+ 27)	2.67(+ 0.07)
谷川	55.7(- 0.2)	1027 (+ 40)	2.59(+ 0.10)
荻浜	61.4(- 0.4)	1238 (+ 116)	3.13(+ 0.30)

表4 過去2年度平均値及び過去2年度標準偏差を用いた調査レベルの試算結果

※カッコ内の数字は、現在の方式で算出した値との差分

Ⅲ まとめ

近年では空間放射線量率の減衰の程度が緩やかになってきており、福島第一原発事故前 の方式で調査レベルを算出したほうがより適切な監視体制となることが判明したため、令 和6年度からは、過去2年度平均値及び過去2年度標準偏差を用いた調査レベルを適用す ることとした。

Ⅳ 参考文献

- 1) 原子力規制庁、「平常時モニタリングについて(原子力災害対策指針補足参考資料)」、 平成 30 年 4 月 4 日制定(令和 3 年 12 月 21 日改訂)
- 2) 石幡茜ほか、宮城県環境放射線監視センター年報、第1巻、p.33-37(2015)

指標海産物の²³⁹⁺²⁴⁰Pu 放射能濃度と²⁴⁰Pu/²³⁹Pu 同位体比について

安達里美、有田富和、杉山照徳1、長谷部洋2

宮城県で継続的に分析している指標海産物(アラメとエゾノネジモク)の²³⁹⁺²⁴⁰Pu 放 射能濃度をとりまとめ、3 か所の採取地点による違いやアラメとエゾノネジモクの違い を比較した。いずれの指標海産物も女川原子力発電所放水口付近の海底土と比較すると 2 桁程度低い濃度であり、採取地点による大きな差は見られなかった。アラメとエゾノ ネジモクで²³⁹⁺²⁴⁰Pu 放射能濃度を比較すると、エゾノネジモクのほうが若干高い傾向が 見られた。さらに、²³⁹Pu と²⁴⁰Pu の各放射能濃度の値を用いて²⁴⁰Pu/²³⁹Pu 同位体比を 算出したところ、いずれの指標海産物も 0.21~0.27 の間に納まっており、宮城県の海底 土と同様、グローバルフォールアウト由来の²⁴⁰Pu/²³⁹Pu 同位体比である 0.18 より高め の値を示し、太平洋で行われたビキニ核実験由来と考えられる影響が一部認められた。

1 はじめに

宮城県では女川原子力発電所環境放射能及び温排水測定基本計画に基づき 1981 年から女川原子力発 電所周辺で環境放射能モニタリングを行っている。その中で、放射性物質の生体濃縮の速度や度合が大 きいことにより、その地域の放射性物質の濃度の変動を把握するために有効な指標海産生物の一つとし て、海藻のアラメ(Eisenia bicyclis)を用いている。アラメは褐藻類に属するコンブ目コンブ科の一種 ¹⁾で、寿命が約 4~6 年程度の多年生であり、潮間帯から水深数 m の岩上に生育する²⁾。ワカメ等に比 べると茎と葉が丈夫で海上が悪天候の際にも流失しにくく、海藻の中では広域で四季を通じて比較的採 取しやすく、夏に葉重量は最大となる。しかし、近年、海藻の減少が宮城県沖においても進行し、いず れアラメの採取が困難になることが懸念されたため、代替試料として 2019 年度から褐藻類に属するヒバ マタ目ホンダワラ科の一種であるエゾノネジモク (Sargassum yezoense) を指標海産物に位置付けた³⁾。 エゾノネジモクは太平洋沿岸では北海道函館から宮城県牡鹿半島、日本海沿岸では北海道留萌から長崎 県五島に分布している²⁰。生育場所については、波当たりの強い暗礁の、水深が浅い硬い岩の上に生育す るという特徴がある。また、冬に生長し、夏に主枝が脱落する。2019年度からはそれぞれの生態を考慮 し、第2四半期(8月)と第3四半期(11月)にアラメを、第1四半期(5月)と第4四半期(2月) にエゾノネジモクを採取している。エゾノネジモクを指標海産物に位置付けてから5年目となり、知見 も蓄積してきたところであるが、2023年度の第3四半期に海水の高水温の影響によって牡鹿半島西側に おいてアラメの群落が消失する状況に陥った。その原因は、黒潮系の暖水の波及や東日本の夏期の平均 気温が気象庁の統計開始以降最高となったことなどの影響によるものと考えられているが、アラメ群落 の回復まで数年かかる見込みであり、今後、ますますエゾノネジモクの指標海産物として測定は重要な ものとなる。

1 現 宮城県環境生活部廃棄物対策課

2 現 宮城県復興·危機管理部原子力安全対策課

前報では、宮城県で採取した陸土及び海底土のプルトニウム分析結果より、²³⁸Pu/²³⁹⁺²⁴⁰Pu 放射能比や ²⁴⁰Pu/²³⁹Pu 同位体比を調べることによって、大崎市岩出山の土壌は大気圏内核実験(グローバルフォー ルアウト)の影響が、女川原子力発電所放水口付近(以下「放水口付近」という。)及び気仙沼湾の海底 土は太平洋で行われたビキニ核実験由来と考えられる影響が一部認められたと報告した⁴⁰。今回、継続的 に分析している指標海産物の²³⁹⁺²⁴⁰Pu 放射能濃度をとりまとめ、採取地点間やアラメとエゾノネジモク 間の濃度を比較した。さらに、²³⁹Pu と²⁴⁰Pu の各放射能濃度の値を用いて²⁴⁰Pu/²³⁹Pu 同位体比を算出 し、その起源について推定したので報告する。

2 方法

2.1 試料採取地点

指標海産物の採取地点を図 1に示す。宮城県内においてア ラメとエゾノネジモクをそれ ぞれ3地点(放水口付近、牡鹿 半島北側及び牡鹿半島西側)で 採取した。また、海底土は放水 口付近で採取した試料の結果 を用いた。

2.2 採取方法・前処理・ 測定方法

試料採取は放射能測定法シ リーズ No.16 環境試料採取法 (文部科学省)に従い実施し た。アラメは葉部を、エゾノ

ネジモクは付着器を除いた全体を測定試料とした。

²³⁸Pu、²³⁹⁺²⁴⁰Pu、²³⁹Pu、²⁴⁰Puの各放射能濃度について、前処理及び測定は放射能測定法シリーズ No.12 プルトニウム分析法及び No.28 環境試料中プルトニウム迅速分析法(文部科学省)に従う方法にて公益 財団法人日本分析センターへ分析を委託し、α線スペクトロメトリー(ORTEC 社製 BU-020-450-AS 等) 及び高分解能型誘導結合プラズマ質量分析法(以下「ICP-MS 法」という。サーモフィッシャーサイエ ンティフィック社製二重収束型高分解能 ICP-MS ELEMENT-2)にて測定を行った。

データについてアラメは 2009 年度から 2022 年度まで、エゾノネジモクは 2017 年度から 2023 年度まで、海底土は 2009 年度から 2023 年度までの測定結果を用いた。

3 結果と考察

3.1 ²³⁹⁺²⁴⁰Pu 放射能濃度

2009 年度から 2013 年度に採取したアラメについては、α線スペクトロメトリーで測定を行った。 ²³⁹⁺²⁴⁰Pu は、放水口付近、牡鹿半島北側及び牡鹿半島西側の各採取地点で継続的に検出されているが、 ²³⁸Pu はいずれの地点においてもすべて不検出(ND)であった(個々の測定値は本年報資料2に掲載)。 2014 年度以降に採取したアラメと、2017 年度から試料採取を開始したエゾノネジモクについては、 ICP-MS 法で測定を行っている。アラメは2009 年度から2022 年度まで、エゾノネジモクは2017 年度 から2023 年度まで、海底土は2009 年度から2023 年度までの²³⁹⁺²⁴⁰Puの放射能濃度については表1及 び図2~3のとおり。なお、放射能濃度の推移を比較するために ICP-MS 法で測定した²³⁹Pu と²⁴⁰Pu の放射能濃度を合算し²³⁹⁺²⁴⁰Pu 放射能濃度としている。

アラメとエゾノネジモクの放射能濃度の範囲はそれぞれ ND~9.7 mBq/kg 生、 3.0~11.5 mBq/kg 生 であり、放水口付近の海底土と比較すると、2 桁程度低い濃度であった。それぞれ3 か所の採取地点間で ²³⁹⁺²⁴⁰Pu 放射能濃度を比較したところ、いずれの指標海産物も牡鹿半島西側において若干値が低めでは あるものの、地点による大きな差は見られなかった。アラメとエゾノネジモクで比較すると、アラメの ²³⁹⁺²⁴⁰Pu 放射能濃度算術平均値は 2.7 mBq/kg 生、エゾノネジモクが 5.6 mBq/kg 生であり、エゾノネ ジモクのほうが若干(3 mBq/kg 生程度)高い傾向が見られた。エゾノネジモクは付着器を除いた全体 を測定試料としているが、アラメは葉部のみを測定試料としている。石川らはアラメにおいて葉部と茎 で ¹³⁷Cs の放射能濃度に差があり、茎よりも葉部のほうが低い傾向であることを報告している 5が、 ²³⁹⁺²⁴⁰Pu も同様に部位による濃度差がある可能性があるため、今後、検証が必要である。

海水中の²³⁹⁺²⁴⁰Puの放射能濃度として、宮城県沖のデータがなかったため公益財団法人海洋生物環境 研究所による岩手県沖表層海水中の濃度 0.0032 mBq/L (2022 年測定値)を採用し⁶、濃縮係数を試算 した(表1)。アラメが 334~3,031 L/kg (算術平均値 791 L/kg)、エゾノネジモクが 938~3,594 L/kg (算術平均値 1734 L/kg)であった。これは、以前石川らが報告した値よりもやや低めの値であった ⁷⁾。

試料名	计学学者	按付粉	²³⁹⁺²⁴⁰ Pu放射能源	農度(mBq∕kg生)	濃縮係数	(L/kg生)
(採取期間)	武科休以场门	快快致	算術平均値	標準偏差	算術平均値	標準偏差
	放水口付近	13	3.5	2.1	1079	672
アラメ	牡鹿半島北	13	2.2	0.57	692	163
(2009–2022)	牡鹿半島西	13	1.9	0.70	586	218
	全地点	39	2.7	1.7	791	464
	放水口付近	7	4.1	1.0	2138	692
エゾノネジモク	牡鹿半島北	5	5.5	1.6	1706	492
(2017–2023)	牡鹿半島西	6	4.1	1.0	1286	321
	全地点	18	5.6	2.0	1734	628
海底土 (2009-2023)	放水口付近	15	212	110	_	_

表1 指標海産物及び海底土の ²³⁹⁺²⁴⁰Pu 放射能濃度と濃縮係数

採取頻度は全試料1回/年。

採取期間中、アラメは 2011 年度分が全地点で欠測、エゾノネジモクは牡鹿半島北で 2018、2019 年 度分、牡鹿半島西で 2019 年度分が欠測。海底土は期間中において欠測はなかった。

濃縮係数は指標海産物中の²³⁹⁺²⁴⁰Pu 放射能濃度(mBq/kg 生)を海水中の²³⁹⁺²⁴⁰Pu 放射能濃度 (0.0032 mBq/L)で除して算出した。

図2 アラメの²³⁹⁺²⁴⁰Pu 放射能濃度推移

計数誤差(σ)は測定値に比べ極めて小さい。 2011 年度分が全地点で欠測となった。 2009 年度における牡鹿半島北が ND であったが、 その他の測定試料はすべて検出されている。

図3 エゾノネジモクの ²³⁹⁺²⁴⁰Pu 放射能濃度推移

計数誤差(σ)は測定値に比べ極めて小さい。 牡鹿半島北が 2018、2019 年度分、牡鹿半島西が 2019 年度分欠測となった。 測定試料はすべて検出されている。

3. 2 ²⁴⁰Pu/²³⁹Pu 同位体比

2014 年度からは ²³⁸Pu の影響がほぼ認められない状況を鑑み ²³⁸Pu を測定対象外とし、代わりに ICP-MS 法を用いて ²³⁹Pu と ²⁴⁰Pu を弁別して測定している。²⁴⁰Pu/²³⁹Pu 同位体比の値は原子炉や核兵 器の種類、核燃料の種類や燃焼時間などによって大きく異なることが知られており®、環境中でのプルト ニウムの動態解明において、その起源が核実験等による核兵器由来であるか、原子力発電所由来である かを判断する上での1つの指標となる。アラメとエゾノネジモクにおける採取地点ごとの239Pu及び240Pu の各放射能濃度並びに ²⁴⁰Pu/²³⁹Pu 同位体比は表 2 のとおり。²⁴⁰Pu/²³⁹Pu 同位体比は、アラメ、エゾノネ ジモクいずれの試料も 0.21~0.27 の間に納まっており、その平均値は 0.23 もしくは 0.24 と海底土の 平均値 0.24 とほぼ同じであった。240Pu/239Pu 同位体比は発生起源ごとに固有の値があり、グローバル フォールアウトが 0.18⁸、ビキニ核実験が 0.33~0.36⁸、福島第一原子力発電所事故(以下「福島第一 原発事故」という。)が 0.30~0.33 %、チョルノービリ事故が 0.41 10とされている。アラメとエゾノネ ジモクの 240Pu/239Pu 同位体比はグローバルフォールアウト値である 0.18 より高めの値を示した。前報 では宮城県沖の海底土の結果から、県沿岸部においてグローバルフォールアウトに加え、太平洋で行わ れたビキニ核実験起源のプルトニウムが北赤道海流を経て、黒潮又は対馬海流から津軽海峡を回り込ん で流れ込む津軽暖流の影響を受け堆積しているものと推定した 4。今回の結果から、指標海産物のプルト ニウムも海底土と同様に、グローバルフォールアウトに加えてビキニ核実験由来と考えられる影響を受 けているものと推測された。

福島第一原発事故の影響に関して 2011 年 6 月及び 2012 年 1 月に行われた国の土壌調査において、福 島第一原子力発電所のごく近い地点では、事故前の調査結果の範囲から外れる高い値が検出されており、 事故の影響があったものと考えられているが、その他の地点は全て事故発生前の調査結果の範囲だった ¹²⁾。このことから、福島第一原発事故によるプルトニウムの飛散は非常に狭い範囲にとどまっていると 考えられている。福島第一原発事故前から測定を開始している宮城県のアラメや海底土について、事故 後も ²³⁹⁺²⁴⁰Pu 放射能濃度や ²⁴⁰Pu/²³⁹Pu 同位体比に大きな変動はなく、これらのプルトニウム分析にお いては事故による影響はなかったものと考えられる。

なお、放水口付近で 2018 年 11 月に採取したアラメ(図2)と同地点で 2019 年 5 月に採取したエゾ ノネジモク(図3)で高めの ²³⁹⁺²⁴⁰Pu 放射能濃度が確認されている(それぞれ 9.7 mBq/kg 生と 11.5 mBq/kg 生)。²⁴⁰Pu/²³⁹Pu 同位体比はそれぞれ 0.24 と 0.22 と他年度試料の同位体比と同等であること から、別要因の流入等によるものではないと考えられる。¹³⁷Cs 放射能濃度に特に異常はないことから、 原因の特定は困難であるものの、Pu 含量が多い水塊や堆積物の影響を受けた等、何らかの環境要因に伴 う変動によるものであると推察している。

試料名 (採取期間)	試料採取場所	²³⁹ Pu測定値 料採取場所 検体数 (mBq/kg生)		²⁴⁰ Pu測 (mBq/I	』測定値 ²⁴⁰ Pu/ ²³⁹ Pu q/kg生) 同位体比			
			算術平均値	標準偏差	算術平均値	標準偏差	算術平均値	標準偏差
/	放水口付近	10	2.0	1.3	1.7	1.1	0.23	0.013
アフメ (2013又は2014-2022)	牡鹿半島北	9	1.3	0.3	1.2	0.2	0.24	0.014
, , ,	牡鹿半島西	9	1.1	0.4	0.9	0.4	0.24	0.018
	放水口付近	7	3.7	1.4	3.1	1.0	0.23	0.013
エソノネジモク (2017-2023)	牡鹿半島北	5	3.0	0.9	2.5	0.7	0.23	0.017
(牡鹿半島西	6	2.2	0.6	1.9	0.5	0.23	0.012
海底土 (2011-2023)	放水口付近	13	107	62	96	55	0.24	0.0036

表2 指標海産物と海底土の ²³⁹Pu と ²⁴⁰Pu の放射能濃度及び ²⁴⁰Pu/²³⁹Pu 同位体比

採取頻度は全試料1回/年。

アラメは放水口付近のみ 2013 年度から、その他の地点は 2014 年度から 2022 年度までの測定結果。 採取期間中、エゾノネジモクが牡鹿半島北で 2018、2019 年度分、牡鹿半島西で 2019 年度分が欠測。 アラメ及び海底土は期間中において欠測はなかった。

4 まとめ

宮城県で採取した指標海産物であるアラメとエゾノネジモクと海底土のプルトニウム分析結果より 239+240Pu 放射能濃度の推移や 240Pu/239Pu 同位体比を調べることによって、下記の結果が得られた。

- (1)²³⁹⁺²⁴⁰Pu 放射能濃度は、いずれの指標海産物も放水口付近の海底土と比較すると 2 桁程度低い濃度であった。また、牡鹿半島西側において若干値が低めではあるものの、採取地点間の大きな差は見られなかった。
- (2) アラメとエゾノネジモク間の ²³⁹⁺²⁴⁰Pu 放射能濃度を比較すると、エゾノネジモクのほうが若干 (3mBq/kg 生程度)高い傾向が見られた。
- (3) ²⁴⁰Pu/²³⁹Pu 同位体比は、いずれの指標海産物においても 0.21~0.27 の間に納まっており、海底 土と同様、グローバルフォールアウト値である 0.18 より高めの値を示し、太平洋で行われたビキ ニ核実験由来と考えられる影響が一部認められた。

謝辞

放射能分析・データ解析に関して多くの助言を頂いた元宮城県原子力センター所長の石川陽一氏に感 謝します。

参考文献

- 1) 瀬川宗吉 「原色日本海藻図鑑」、保育社、39-44(1981)
- 2) 熊登谷正浩編著 「藻場の海藻と造成技術」、成山堂、75-83、100-105 (2003)
- 3) 小笠原一考ほか 「環境放射能調査における新たな指標海産物の検討」、宮城県環境放射線監視センタ 一年報、第4巻、15-20 (2018)
- 4) 高橋稜ほか 「宮城県の土壌及び海底土におけるプルトニウム起源の推定」、宮城県環境放射線監視センター年報、第8巻、7-12 (2022)
- 5) 石川陽一ほか 「褐藻類アラメにおける ¹³⁷Cs と ⁴⁰K の濃度の藻体内分布と経時変動及び濃縮係数」、 宮城県環境放射線監視センター年報、第 3 巻、7-14 (2017)
- 6)公益財団法人海洋生物環境研究所「令和4年度原子力施設等防災対策等委託費(海洋環境における 放射能調査及び総合評価)事業調査報告書」、267(2023)
- 7) 石川陽一ほか 「海洋放射能汚染指標海産生物としてのアラメその他の褐藻の特性」、宮城県環境放射 線監視センター年報、第5巻、7-16 (2019)
- 8) 山田正俊「海洋におけるプルトニウム同位体の挙動について」、温泉科学(J. Hot Spring Sci.)、70、
 208-220 (2021)
- 9) Jian Zheng ほか Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident. Scientific Reports 2, 304; DOI:10.1038/srep00304 (2012)
- 10) Y. Muramatsu (まか) Concentrations of ²³⁹Pu and ²⁴⁰Pu and their isotopic ratios determined by ICP-MS in soils collected from the Chernobyl 30-km zone, Environ. Sci. Technol, 34, pp. 2913-2917. (2000)
- 11) 環境省 「放射線による健康影響等に関する統一的な基礎資料(令和4年度版)」第7章 環境モニタ リング、48(2023)

Ⅲ 学会発表等の要旨

(1) 第 25 回「環境放射能」研究会、つくば市、2024 年 3 月 11 日-13 日

題目:海産物の放射能測定における消化管内容物の影響

発表者:有田富和、安達里美、伊藤節男、杉山照徳、長谷部洋

2020年4月に採取したマボヤから例年に比べ高い濃度の¹³⁷Cs が検出された。処理途中の灰化試料には消化管内 容物と思われる赤色の固形物が多数認められ、比較的高い濃度の⁷Be も検出された。さらに、ICP 発光分析では高 濃度の鉄も検出された。この原因として、採取直前の海況は風雨が強く荒れていたこともあり、消化管内への土壌 の残留を疑い、再度同じ海域からマボヤを採取し、消化管内容物を徹底的に除去して測定を行った。その結果、可 食部から¹³⁷Cs は検出されず、逆に消化管内容物のみを集めた試料からは高い¹³⁷Cs 濃度が認められた。これらのこ とから、今回の¹³⁷Cs 濃度の上昇は、荒天により¹³⁷Cs を含む表土が海域に一過性かつ多量に流入し、これをマボヤ が大量に取り込み、通常の前処理過程で除去しきれず灰試料に混入したことによるものと推定した。さらに、県原 子力センターによる過去の調査ではマボヤが⁷Be を濃縮すること示しているが、今回の研究で¹³⁷Cs の可食部への移 行はほぼ無いことも明らかとなった。

(2)第39回 宮城県保健環境センター研究発表会、仙台市、2024年3月1日 題目:近年の牡鹿半島沿岸における褐藻類からの¹³¹I 検出状況

発表者:有田富和、安達里美、杉山照徳、長谷部洋

2006年以降、牡鹿半島沿岸海域で採取した海藻類からは、散発的に¹³¹Iが検出され続けている。2010年 度までの検出状況については県原子力センター年報で既報であるが、今回、2011年の東京電力(株)福島第一 原子力発電所事故から 2022年度までの迅速法による¹³¹Iの検出状況をとりまとめた。期間中、アラメ 196 件中 24 件、エゾノネジモク 38 件中 3 件から¹³¹Iが検出されており、その濃度はアラメ 2 件で 1Bq/kg(生 重量)をわずかに超過した以外は、それぞれ 0.093~0.41 Bq/kg(生)及び 0.13~0.23 Bq/kg(生)の範囲 であった。当該期間中、東北電力(株)女川原子力発電所は 1~3 号機の全機が稼働を停止していること、発電 所に最も近い採取地点である放水口付近で採取した試料からは¹³¹I は一度も検出されていないこと、最も頻 繁に検出されている海域には都市部を流域とする大河川が流入していること、¹³¹I は甲状腺がんの治療など に比較的多量に使用されていることなどから、これらアラメやエゾノネジモクから検出された¹³¹I について は、核医学に由来する可能性が高いものと考えられた。

題目:宮城県の土壌及び海底土におけるプルトニウム起源の推定 発表者:安達里美、高橋稜、有田富和、杉山照徳、長谷部洋

宮城県は2003年度から、平常時におけるバックグラウンドの把握や環境中における人工放射性核種の挙動解析等を目的として、種々の環境試料についてプルトニウムを継続的に測定してきた。データが蓄積できた試料のうち土壌1地点と海底土2地点の測定結果に着目し、α線スペクトロメトリー法による²³⁸Pu 及び²³⁹⁺²⁴⁰Pu の測定値から²³⁸Pu/²³⁹⁺²⁴⁰Pu 放射能比を、ICP-MS 法による²³⁹Pu 及び²⁴⁰Pu の測定値から²⁴⁰Pu/²³⁹Pu 同位体比を算出し、プルトニウムの起源を推定した。大崎市岩出山の土壌は、グローバルフォールアウトの影響が、放水口付近及び気仙沼湾の海底土は、太平洋で行われたビキニ核実験由来と考えられる影響が一部認められた。

資料1 宮城県における環境放射能核種分析結果

以下に、2023年(令和5年)4月から2024年(令和6年)3月までに採取した試料の核種分析結果 を示す。

[図表一覧]

図-1:Ge半導体検出器用測定試料形状と容器 表-1:Ge半導体検出器の主な性能

G e 半導体検出器による分析結果:表-2~表-26、参考1、参考2

放射能測定法シリーズNo.7 (2020年改訂 原子力規制委員会)、「ゲルマニウム半導体検出器に よる γ 線スペクトロメトリー」に基づく分析結果を示す(測定器については表-1のとおり)。 これらのデータは、主に「令和5年度 女川原子力発電所 環境放射能調査結果(令和6年10月 宮 城県)」において公表した核種(⁷Be、⁴⁰K、¹³⁴Cs、¹³⁷Cs、¹³¹I)の分析値である。ほかに、試料によ っては²¹⁰Pb、²¹²Pbまたは²¹⁴Pbの値も記載している。表-2~表-26、参考1及び参考2において 核種名の表記は、例えば⁷BeについてはBe-7とした(以下、同様)。なお、放射能の値は試料採取 日における値である(以下、同様)。

Sr-90分析結果:表-27

放射能測定法シリーズNo.2(2003年改訂 文部科学省)、「放射性ストロンチウム分析法」に基づく分析結果を示す(測定器:日立アロカメディカル製LBC-4202B)。

H-3分析結果:表-28

放射能測定法シリーズNo.9(2002年改訂 文部科学省、2023年改訂 原子力規制委員会)、「ト リチウム分析法」に基づく分析結果を示す(測定器:日立アロカメディカル製LSC-LB7)。

原子力規制庁委託調査結果(令和5年度):表-29~表-33

これらのデータは、原子力規制庁からの環境放射能水準調査の委託により得られた成果の一部である。

検出下限値及び数値の表し方

- ・検出下限値は、試料の測定値(正味計数)の統計誤差(計数誤差)の3倍とする。
- ・測定結果が検出下限値以上の場合、統計誤差を併記し、検出下限値よりも小さい場合は 「N D」 (Not Detected) とする。
- ・ 測定値の表示桁数は2桁とし、統計誤差は測定値の最下位桁まで表示する(例1、2)。
 - (例1) 69.07±14.32 \rightarrow 69±14
 - (例 2) 69.07±1.432 \rightarrow 69±1
- ・測定値の最上位桁に比べて統計誤差の最上位桁が3桁目以下の場合、測定値は統計誤差の最 上位桁と同じ位まで表示し、統計誤差は、最上位桁のみを表示する(例3、4)。 ただし、統計誤差を丸めた結果、位が上がり桁数が増えた場合は、統計誤差を2桁表示する

(例5)。

- (例3) 69.07±0.1432 \rightarrow 69.1±0.1
- (例4) 69.07±0.01432 \rightarrow 69.07±0.01
- (例5) 69.07 \pm 0.964 \rightarrow 69.1 \pm 1.0
- ・数値の丸め方は、表示桁数を(n)桁とする場合、(n+1)桁まで計算し(n+1)桁を四 捨五入する。

採取された浮遊じん 有効径53mm φ

(a) 大気浮遊じん用ろ紙

上:セルロース・

(b) U 8 型容器

材質:ポリプロピレン樹脂

用途:降下物、土壌、その他の試料用

ガラス繊維ろ紙 (Toyo、 HE-40T) 下:活性炭ろ紙 (Toyo、 CP-20)

容器:直径47mmφ ×50mm高

試料厚:0~50mmの 範囲で任意

図-1 Ge半導体検出器用

測定試料形状と容器

(c)マリネリ容器

(迅速法、

その他の試料用)

表-1 G e 半導体検出器の主な性能

	検出器番号	監視用Ge 1	監視用Ge 2	水準用Ge	
	検出器型名	ORTEC GMX25P4-70-RB-B	ORTEC GEM25-70	ORTEC GEM25P4-70	
検出	器サイズ(mm)	52. 4 $\phi \times 63.2$	59.0 $\phi \times 49.3$	59.0 $\phi \times 47.1$	
検出器エンドキャップ		1.7 mm、 Cu	1.0 mm、 Al	1.0 mm、 Al	
	検出器窓	0.5 mm Be		_	
印加電圧		-3100 V	+3000 V	+1500 V	
		SEIKO EG&G	SEIKO EG&G	SEIKO EG&G	
MCA 译	(ADC、 Lin.AMP、 高圧電源含む)	MCA-7a型	MCA-7a型	MCA-7a型	
		M7-010	M7-010	M7-010	
	FWHM at 1.33 MeV	1.81 keV	1.74 keV	1.77 keV	
検出器 性能	P/C比	57.14	59.34	58.23	
	相対効率 *	27.76 %	30.47 %	27.63 %	
遮~	~い体厚さ(mm)				
(内偵	則より)				
アク	リル樹脂	2	2	_	
無酸	素銅	3	3	_	
鉄		_	_	158	
鉛		120	120	_	
鋼鉄		10	10	-	
		FUJITSU	ESPRIMO	FUJITSU ESPRIMO	
デ	「ータ解析装置	D70	10/F	D7011/H	

* 相対効率は、線源-検出器間距離25 cmのときの、^{6°}Coの1.33 MeV-γ線エネルギーにおける
 3" φ×3" NaI(Tl)検出器に対する相対値。

(1) G e 半導体検出器による分析結果

表-2 月間降下物の核種分析結果(1)

4=				降下	物		
武	件 泊			雨水・ち	59		
採	採取地点 女川町浦宿浜(女川オフサイトセンター)*						
坝	夜期期	2023. 4. 4	2023. 5. 1	2023. 6. 1	2023. 7. 3	2023. 8. 1	2023. 9. 1
	秋 <i>州</i> 间	\sim 2023. 5. 1	\sim 2023. 6. 1	\sim 2023. 7. 3	\sim 2023. 8. 1	\sim 2023.9.1	\sim 2023.10.2
採	取月	4月分	5月分	6月分	7月分	8月分	9月分
試料	科番号	23F00014	23F00034	23F00047	23F00061	23F00078	23F00089
	Be- 7	106.0 ± 1.0	95.4±0.9	177 ± 1	78.8±0.7	16.6 ± 0.4	109.9 ± 0.8
	K - 40	(1.1)	1.2 ± 0.4	(0.74)	N D	N D	N D
妆卧能	Pb-210	17.5 ± 0.4	17.8 ± 0.4	-	-	_	-
瓜豹肥	Cs-134	N D	N D	N D	N D	N D	N D
	Cs-137	0.26 ± 0.03	0.14 ± 0.02	0.060 ± 0.018	0.078 ± 0.017	N D	0.064 ± 0.018
	単位	Bq/m^2	Bq/m^2	Bq/m^2	Bq/m^2	Bq/m^2	Bq/m^2
試料採取	、面積(m ²)	0.5	0.5	0.5	0.5	0.5	0.5
蒸発残済	查量(g/m ²)	3.1	3.1	1.3	1.1	0.9	1.4
Ge検出器番号		1	1	2	2	2	2
) (ライブ	定時間 タイム ; 秒)	80000	80000	80000	80000	80000	80000
備	考						

(注)NDであって、スペクトル上で光電ピークが認められた場合、検出下限値をカッコ()書きで示す。 * 令和3年4月1日以降、採取場所を女川町浦宿浜地内の女川宿舎から女川オフサイトセンターに変更している。

表-3 月間降下物の核種分析結果(2)

长	彩. 夕			降下	物		
₽ [⊥] √	117 70			雨水・ち	59		
採取地点 女川町浦宿浜(女川オフサイトセンター)*							
1071	市田田	2023.10.2	2023.11.1	2023. 12. 1	2024. 1. 5	2024. 2. 1	2024. 3. 1
	秋 <i>州</i> 间	$\sim 2023.11.1$	$\sim 2023.12.1$	\sim 2024. 1. 5	$\sim 2024.2.1$	\sim 2024. 3. 1	\sim 2024. 4. 2
採	取月	10月分	11月分	12月分	1月分	2月分	3月分
試	科番号	23F00101	23F00126	23F00139	23F00144	23F00157	23F00165
	Be- 7	79.4 \pm 0.7	39.5 ± 0.6	22.1 \pm 0.5	29.0 ± 0.5	53.3 ± 0.7	208 ± 1
	K - 40	N D	N D	N D	1.6 ± 0.4	N D	2.2 ± 0.4
七分自十分上	Pb-210	-	7.9 ± 0.3	6.1±0.3	6.7 ± 0.3	11.2 ± 0.3	28.4 ± 0.5
瓜豹肥	Cs-134	N D	N D	N D	N D	N D	N D
	Cs-137	N D	0.066 ± 0.021	N D	0.068 ± 0.022	0.16 ± 0.03	0.19 ± 0.03
	単位	Bq/m^2	Bq/m^2	Bq/m^2	Bq/m^2	Bq/m^2	Bq/m^2
試料採取	、面積(m ²)	0.5	0.5	0.5	0.5	0.5	0.5
蒸発残浴	查量(g/m ²)	1.5	1.6	1.3	4.2	2.8	8.5
Ge検出器番号		2	1	1	1	1	1
) (ライブ	定時間 タイム ; 秒)	80000	80000	80000	80000	80000	80000
備	考						

* 令和3年4月1日以降、採取場所を女川町浦宿浜地内の女川宿舎から女川オフサイトセンターに変更している。

表-4 月間降下物の核種分析結果(3)

45	彩友			降下	物		
靜入	14 名			雨水•	ちり		
採	取地点		仙台	市宮城野区(環境が	(射線監視センター	-)	
1	市田問	2023. 4. 4	2023. 5. 1	2023. 6. 1	2023. 7. 3	2023. 8. 1	2023. 9. 1
1禾」	以刑间	\sim 2023. 5. 1	\sim 2023. 6. 1	\sim 2023.7.3	\sim 2023.8.1	\sim 2023.9.1	\sim 2023.10.2
採	、取月	4月分	5月分	6月分	7月分	8月分	9月分
試	料番号	23F00013	23F00033	23F00046	23F00060	23F00077	23F00085
	Be- 7	74.7±0.8	115.1 ± 1.0	159 ± 1	139.4 ± 1.0	11.9 ± 0.3	112.0 ± 1.0
	K - 40	1.6 ± 0.4	1.4 ± 0.4	N D	N D	(0.75)	2.0 ± 0.4
七日台	Pb-210	12.4 ± 0.3	22.6 ± 0.4	17.1 ± 0.4	-	-	14.1 ± 0.3
加入的肥	Cs-134	N D	N D	N D	N D	N D	N D
	Cs-137	0.68 ± 0.04	0.54 ± 0.03	0.14 ± 0.02	0.091 ± 0.019	0.14 ± 0.02	0.12 ± 0.02
	単位	Bq/m^2	Bq/m^2	Bq/m^2	Bq/m^2	Bq/m^2	Bq/m^2
試料採取	ス面積(m ²)	0.5	0.5	0.5	0.5	0.5	0.5
蒸発残液	査量(g/m ²)	4.1	3. 3	1.6	1.3	1.6	2.5
Ge検出器番号		1	1	1	2	2	1
) (ライブ	定時間 タイム ; 秒)	80000	80000	80000	80000	80000	80000
1	備考			対照地	点*		

(注) NDであって、スペクトル上で光電ピークが認められた場合、検出下限値をカッコ()書きで示す。
 * 女川原子力発電所から約10km以遠の地点(海域)を対照地点(対照海域)と記載した。以下、他の降下物、陸土、指標植物、魚介類、海水、海底土及び指標海産物についても同様である。

表-5 月間降下物の核種分析結果(4)

4:	彩. 夕			降下	物		
μr.	147 141			雨水・	ちり		
採	取地点		仙台	市宮城野区(環境放	x射線監視センター	-)	
111	市田問	2023. 10. 2	2023.11.1	2023. 12. 1	2024. 1. 5	2024. 2. 1	2024. 3. 1
採取期間		\sim 2023.11.1	\sim 2023.12.1	$\sim 2024.1.5$	$\sim 2024.2.1$	\sim 2024. 3. 1	\sim 2024. 4. 2
採取月		10月分	11月分	12月分	1月分	2月分	3月分
試	料番号	23F00097	23F00125	23F00135	23F00143	23F00156	23F00164
	Be- 7	34.5 ± 0.5	40.7 ± 0.6	35.2 ± 0.5	29.9 ± 0.5	45.7 ± 0.6	87.8±0.7
	K - 40	(0.75)	1.3 ± 0.4	N D	1.1 ± 0.2	1.4 ± 0.4	1.3 ± 0.3
齿针绐	Pb-210	-	8.4±0.3	6.2 ± 0.3	-	11.4 ± 0.3	-
瓜豹胞	Cs-134	N D	N D	N D	N D	N D	N D
	Cs-137	0.31 ± 0.02	0.28 ± 0.03	0.14 ± 0.02	0.31 ± 0.02	0.75 ± 0.04	0.46 ± 0.03
	単位	Bq/m^2	Bq/m^2	Bq/m^2	Bq/m^2	Bq/m^2	Bq/m^2
試料採取	ス面積(m ²)	0.5	0.5	0.5	0.5	0.5	0.5
蒸発残液	查量(g/m ²)	1.9	2.1	1.6	3.1	4.9	5.0
Ge検出器番号		2	1	1	2	1	2
測) (ライブ	定時間 タイム ; 秒)	80000	80000	80000	80000	80000	80000
1	備考			対照地	1点		

(注) NDであって、スペクトル上で光電ピークが認められた場合、検出下限値をカッコ() 書きで示す。

試 料 名		隆下物					
		雨水・ちり					
採	取地点	女川町飯子浜(飯子浜MS)					
松市 期間		2023. 4. 4	2023. 7. 3	2023.10.2	2024. 1. 5		
	山大方同	\sim 2023.7.3	\sim 2023. 10. 2	\sim 2024. 1. 5	\sim 2024. 4. 2		
ŧ	采取月	4~6月分	7~9月分	10~12月分	1~3月分		
試	料番号	23F00048	23F00090	23F00136	23F00166		
	Be- 7	191 ± 2	148 ± 2	83 ± 1	150 ± 2		
	K - 40	3.9 ± 0.7	N D	5.1 \pm 1.0	4.1 ± 0.7		
放射	Pb-210	-	-	26.7 \pm 0.8	-		
能	Cs-134	N D	N D	N D	N D		
	Cs-137	0.34 ± 0.06	N D	0.32 ± 0.06	0.42 ± 0.06		
	単位	Bq/m^2	Bq/m^2	Bq/m^2	Bq/m^2		
試料採取面積(m ²)		0.1886	0.1886	0.1886	0.1886		
蒸発残渣量(g/m ²)		8.3	2.4	4.9	12.2		
Ge検出器番号		2	2	1	2		
測定時間 (ライブタイム:秒)		80000	80000	80000	80000		
備者							

表-6 四半期間降下物の核種分析結果(1)

表-7 四半期間降下物の核種分析結果(2)

試 料 名		降下物				
		雨水・ちり				
採取地点		石巻市鮫浦 (鮫浦MS)				
採取期間		2023. 4. 4	2023. 7. 3	2023.10.2	2024. 1. 5	
		\sim 2023.7.3	\sim 2023. 10. 2	\sim 2024. 1. 5	\sim 2024. 4. 2	
邦	采取月	4~6月分	7~9月分	10~12月分	1~3月分	
試	料番号	23F00049	23F00091	23F00137	23F00167	
	Be- 7	237 ± 2	189 ± 2	80 ± 1	173 ± 2	
	K - 40	(3.0)	N D	(2.9)	3.3 ± 0.7	
放射	Pb-210	62 ± 1	33.2 ± 0.8	22.5 \pm 0.7	-	
能	Cs-134	N D	N D	N D	N D	
	Cs-137	0.51 ± 0.07	0.20 ± 0.05	(0.17)	0.25 ± 0.05	
	単位	Bq/m^2	Bq/m^2	$\mathrm{Bq/m}^2$	Bq/m^2	
試料採取面積(m ²)		0.1886	0.1886	0.1886	0.1886	
蒸発残渣量(g/m ²)		7.3	3.0	3.2	10.7	
Ge検出器番号		1	1	1	2	
測定時間 (ライブタイム;秒)		80000	80000	80000	80000	
備考						

(注)NDであって、スペクトル上で光電ピークが認められた場合、検出下限値をカッコ()書きで示す。

表 - 8 四半期间降下物の核種分析結果(3)	表-8	四半期間降下物の核種分析結果	(3)
-------------------------	-----	----------------	-----

試 料 名		降下物				
		雨水・ちり				
採取地点		石巻市谷川浜(谷川MS)				
松市相間		2023. 4. 4	2023. 7. 3	2023.10.2	2024. 1. 5	
1木	和刑刑	\sim 2023. 7. 3	\sim 2023. 10. 2	\sim 2024. 1. 5	\sim 2024. 4. 2	
採取月		4~6月分	7~9月分	10~12月分	1~3月分	
試料番号		23F00050	23F00092	23F00138	23F00168	
	Be- 7	336 ± 3	191 ± 2	69 ± 1	198 ± 2	
	K - 40	2.2 ± 0.7	N D	2.0 ± 0.6	4.4 ± 0.7	
齿针船	Pb-210	-	-	-	-	
瓜গ肥	Cs-134	N D	N D	N D	N D	
	Cs-137	0.51 ± 0.06	0.25 ± 0.05	0.21 ± 0.05	0.59 ± 0.06	
	単位	Bq/m^2	Bq/m^2	Bq/m^2	Bq/m^2	
試料採取面積(m ²)		0.1886	0.1886	0.1886	0.1886	
蒸発残渣量(g/m ²)		9.3	3.4	3.6	13.9	
Ge検出器番号		2	2	2	2	
測定時間 (ライブタイム ; 秒)		80000	80000	80000	80000	
備考						

表-9 農産物の核種分析結果

試 料 名		精米	大根				
			根	葉	根	葉	
捋	、取地点	石巻市谷川浜	女川町女川浜		石巻市小渕浜		
採取月日		2023.11.1	2023. 11. 21		2023. 11. 17		
討	(料番号	23VG0102	23VG0116	23VG0117	23VG0112	23VG0113	
	Be- 7	(0.19)	N D	7.0 ± 0.2	N D	4.9 ± 0.2	
	K - 40	26.9 ± 0.3	54.2 ± 0.4	62.3 ± 0.6	76.8 ± 0.5	72.0 ± 0.6	
放射能	Pb-210	N D	N D	1.0 ± 0.1	N D	1.1 ± 0.1	
	Cs-134	N D	N D	N D	N D	N D	
	Cs-137	N D	N D	N D	N D	0.046 ± 0.010	
	単位	Bq/kg生	Bq/kg生	Bq/kg生	Bq/kg生	Bq/kg生	
試料量(kg生)*		4. 98	5.00	2.00	5.00	2.00	
灰分(%)		0.74	0.69	1.16	0.93	1.01	
Ge検出器番号		1	1	1	1	1	
測定時間 (ライブタイム ; 秒)		80000	80000	80000	80000	80000	
備考							

 (注) NDであって、スペクトル上で光電ピークが認められた場合、検出下限値をカッコ()書きで示す。
 * 測定には灰化した試料を用いており、試料量は生重量に換算した値を示す。以下、他の農産物、指標植物、 魚介類及び指標海産物についても同様である。 *

表-10 陸水の核種分析結果

試 料 名		陸水				
採取地点		女川町女川浜		石巻市泊浜*		
採取月日		2023. 7. 4	2024. 1. 11	2023. 7. 4	2024. 1. 11	
試料番号		23LW0053	23LW0140	23LW0054	23LW0141	
	Be- 7	N D	N D	N D	(18)	
	K - 40	N D	N D	N D	27 ± 6	
北东东于公司	Pb-210	N D	-	N D	-	
成初祀	Cs-134	N D	N D	N D	N D	
	Cs-137	N D	N D	N D	N D	
	単位	mBq/L	mBq/L	mBq/L	mBq/L	
試料量(L)		20.0	20.0	20.0	20.0	
Ge検出器番号		1	2	1	2	
測定時間 (ライブタイム ; 秒)		80000	80000	80000	80000	
備考						

(注)NDであって、スペクトル上で光電ピークが認められた場合、検出下限値をカッコ()書きで示す。 * 令和5年6月1日以降、採取地点を前網から泊浜に変更している。

表-11 陸土の核種分析結果

封 判 友		陸上		
	村 石	未耕土		
採印	反地点	石巻市谷川浜	大崎市岩出山 (城山公園)	
採印	反月 日	2023. 6. 13	2023. 6. 14	
試料	斗番号	23LS0040	23LS0041	
	Be- 7	N D	N D	
	K - 40	710 ± 10	229 ± 9	
	Pb-212	50.8 ± 1.0	21 ± 1	
放射能 ^{*1}	Pb-214	24 ± 1	9.2 \pm 1.4	
	Cs-134	N D	9.4 ± 0.5	
	Cs-137	27.2 ± 0.7	458 ± 3	
	単位	Bq/kg乾土	Bq/kg乾土	
換算	係数 ^{*2}	47.5	34.0	
試料量	セ(g乾土)	110	88	
Ge検と	出器番号	1	1	
<u>測気</u> (ライブ:	官時間 タイム ; 秒)	80000	80000	
Í	<u></u>		対照地点	

*1 低エネルギー y 線放出核種であるPb-210については試料が厚くかつ密度が高いために自己吸収補正が困難で あるので、掲載しなかった。一方でTh系列とU系列の代表的な y 線放出核種であるPb-212とPb-214については 概ねTh-232及びU-238と放射平衡と見なせるため、参考のため掲載した。

*2 換算係数とは、Bq/kg乾土からBq/m²への換算乗数を表す。
表-12 浮遊じんの核種分析結果(1)

				~							
45	¥ 夕			浮 遊	じん						
ĒΨ	17 71	_									
採明	反地点		女川町女川浜(女川MS)								
+57 H	5, HA 88	2023. 3. 30	2023. 4. 28	2023. 5. 31	2023.6.30	2023. 7. 31	2023.8.30				
休日	以舟川町	\sim 2023. 4. 28	\sim 2023. 5. 31	\sim 2023.6.30	\sim 2023.7.31	\sim 2023.8.30	\sim 2023.9.29				
採	取月	4月分	5月分	6月分	7月分	8月分	9月分				
試料	科番号	23AE0015	23AE0035	23AE0055	23AE0063	23AE0079	23AE0086				
	Be- 7	6.8±0.2	4.9 ± 0.1	2.2 ± 0.1	2.3 ± 0.1	1.7 ± 0.1	3.6 ± 0.1				
	K - 40	N D	N D	N D	(0.40)	N D	N D				
齿针船	Pb-210	-	-	0.44 ± 0.07	0.50 ± 0.07	-	-				
加入3个月已	Cs-134	N D	N D	N D	N D	N D	N D				
	Cs-137	N D	N D	N D	N D	N D	N D				
	単位	mBq/m^3	mBq/m^3	mBq/m^3	mBq/m^3	mBq/m^3	mBq/m^3				
試料	·量(m ³)	1208	1386	1255	1317	1228	1269				
Ge検と	出器番号	2	2	1	1	2	2				
測定時間 (ライブタイム;秒)		80000	80000	80000	80000	80000	80000				
ſ	<u></u> 構考										

(注)NDであって、スペクトル上で光電ピークが認められた場合、検出下限値をカッコ()書きで示す。

表-13 浮遊じんの核種分析結果(2)

討 料 夕				浮 遊	じん					
邗	117 泊	_								
採印	文地点			女川町女川浜	(女川MS)					
抠	立相関	2023. 9. 29	2023. 10. 31	2023. 11. 30	2023. 12. 27	2024. 1. 31	2024. 2. 29			
1774	入为旧	\sim 2023.10.31	\sim 2023.11.30	\sim 2023.12.27	\sim 2024.1.31	\sim 2024.2.29	\sim 2024.3.28			
採	取月	10月分	11月分	12月分	1月分	2月分	3月分			
試料	斗番号	23AE0098	23AE0121	23AE0131	23AE0145	23AE0158	23AE0169			
	Be- 7	3.9 ± 0.1	3.5 ± 0.1	2.5 ± 0.1	2.8 ± 0.1	4.7 \pm 0.1	4.1 ± 0.1			
	K - 40	N D	N D	N D	N D	N D	N D			
坊针船	Pb-210	-	0.75 ± 0.08	0.57 ± 0.08	0.64 ± 0.06	-	-			
加州 肥	Cs-134	N D	N D	N D	N D	N D	N D			
	Cs-137	N D	N D	N D	N D	N D	N D			
	単位	mBq/m^3	mBq/m^3	mBq/m^3	mBq/m^3	mBq/m^3	mBq/m^3			
試料	·量(m ³)	1346	1203	1024	1394	1161	1052			
Ge検L	出器番号	2	1	1	1	2	2			
測定時間 (ライブタイム ; 秒)		80000	80000	80000	80000	80000	80000			
Í										

表-14 浮遊じんの核種分析結果(3)

計判反				浮 遊	じん						
市八	作名		_								
採日	取地点										
157 F	专业目目	2023. 3. 31	2023. 4. 28	2023. 5. 31	2023. 6. 30	2023. 7. 31	2023.8.30				
休日	以别间	\sim 2023. 4. 28	$\sim 2023.5.31$	\sim 2023. 6. 30	$\sim 2023.7.31$	\sim 2023. 8. 30	\sim 2023. 9. 29				
採	取月	4月分	5月分	6月分	7月分	8月分	9月分				
試料	斗番号	23AE0017	23AE0037	23AE0057	23AE0065	23AE0081	23AE0088				
	Be- 7	6.5 ± 0.2	4.9 ± 0.1	2.7 ± 0.1	2.6 ± 0.1	1.69 ± 0.09	4.0 ± 0.1				
	K - 40	N D	N D	(0.33)	0.67 ± 0.14	(0.31)	N D				
十年前十分日	Pb-210	-	-	-	0.52 ± 0.07	-	-				
瓜 ⁄ 扪 拒	Cs-134	N D	N D	N D	N D	N D	N D				
	Cs-137	N D	N D	N D	N D	N D	N D				
	単位	mBq/m^3	mBq/m^3	mBq/m^3	mBq/m^3	mBq/m^3	mBq/m^3				
試料	ŀ量(m ³)	1178	1500	1402	1281	1417	1334				
Ge検出	出器番号	2	2	2	1	2	2				
測定時間 (ライブタイム ; 秒)		80000	80000	80000	80000	80000	80000				
ĺ	備考										

(注)NDであって、スペクトル上で光電ピークが認められた場合、検出下限値をカッコ()書きで示す。

表-15 浮遊じんの核種分析結果(4)

計料名				浮 遊	じん		
pH.	11 12						
採日	反地点			石巻市寄磯浜	(寄磯MS)		
±57 F	Ē; #11 目目	2023. 9. 29	2023. 10. 31	2023.11.30	2023. 12. 27	2024. 1. 31	2024. 2. 29
	以刑同	\sim 2023. 10. 31	\sim 2023. 11. 30	\sim 2023. 12. 27	\sim 2024. 1. 31	\sim 2024. 2. 29	\sim 2024. 3. 28
採	取月	10月分	11月分	12月分	1月分	2月分	3月分
試料番号		23AE0100	23AE0123	23AE0133	23AE0147	23AE0160	23AE0171
	Be- 7	4.3±0.1	3.8±0.1	2.7 \pm 0.1	3.6 ± 0.1	4.7 ± 0.1	4.1 ± 0.1
	K - 40	N D	N D	(0.47)	N D	N D	(0.38)
七分自十台七	Pb-210	-	0.94 ± 0.08	0.64 ± 0.08	-	-	-
	Cs-134	N D	N D	N D	N D	N D	N D
	Cs-137	N D	N D	N D	N D	N D	N D
	単位	mBq/m^3	mBq/m^3	mBq/m^3	mBq/m^3	mBq/m^3	mBq/m^3
試料	·量(m ³)	1412	1242	1163	1501	1308	1198
Ge検b	出器番号	2	1	1	2	2	2
測定時間 (ライブタイム ; 秒)		80000	80000	80000	80000	80000	80000
ĺ							

(注)NDであって、スペクトル上で光電ピークが認められた場合、検出下限値をカッコ()書きで示す。

表-16 浮遊じんの核種分析結果(5)

計判友				浮 遊	じん					
邗人	147 泊				-					
採日	取地点									
₩F	立即即	2023. 3. 30	2023. 4. 28	2023. 5. 31	2023. 6. 30	2023. 7. 31	2023. 8. 30			
1末1	以刑同	\sim 2023. 4. 28	\sim 2023. 5. 31	\sim 2023. 6. 30	\sim 2023. 7. 31	\sim 2023. 8. 30	\sim 2023. 9. 29			
採	取月	4月分	5月分	6月分	7月分	8月分	9月分			
試料	料番号	23AE0016	23AE0036	23AE0056	23AE0064	23AE0080	23AE0087			
	Be- 7	5.8 ± 0.2	4.4 ± 0.1	2.2 ± 0.1	2.7 ± 0.1	1.74 ± 0.09	3.5 ± 0.1			
	K - 40	N D	N D	(0.35)	0.37 ± 0.11	N D	N D			
七日十七日	Pb-210	-	-	-	-	-	-			
瓜গ肥	Cs-134	N D	N D	N D	N D	N D	N D			
	Cs-137	N D	N D	N D	N D	N D	N D			
	単位	mBq/m^3	mBq/m^3	mBq/m^3	mBq/m^3	mBq/m^3	mBq/m^3			
試料	∤量(m ³)	1240	1475	1337	1359	1383	1340			
Ge検出	出器番号	2	2	2	2	2	2			
測定時間 (ライブタイム ; 秒)		80000	80000	80000	80000	80000	80000			
1	備考									

(注)NDであって、スペクトル上で光電ピークが認められた場合、検出下限値をカッコ ()書きで示す。

* 参考として記載した。

表-17 浮遊じんの核種分析結果(6)

試 料 名				浮 遊	じん		
пЦ	11 12						
採	反地点			女川町塚浜小屋町	这(小屋取MS)*		
坝	おまし	2023. 9. 29	2023. 10. 31	2023. 11. 30	2023. 12. 27	2024. 1. 31	2024. 2. 29
1不口	以刑問	\sim 2023. 10. 31	\sim 2023. 11. 30	\sim 2023. 12. 27	\sim 2024. 1. 31	\sim 2024. 2. 29	\sim 2024. 3. 28
採	取月	10月分	11月分	12月分	1月分	2月分	3月分
試	斗番号	23AE0099	23AE0122	23AE0132	23AE0146	23AE0159	23AE0170
	Be- 7	3.8 ± 0.1	3.2 ± 0.1	2.3 ± 0.1	2.46 \pm 0.09	4.2 ± 0.1	3.5 ± 0.1
	K - 40	N D	N D	(0.47)	N D	N D	N D
北白土	Pb-210	-	0.71 ± 0.07	0.58 ± 0.08	0.52 ± 0.06	-	-
放射 E	Cs-134	N D	N D	N D	N D	N D	N D
	Cs-137	N D	N D	N D	N D	N D	N D
	単位	mBq/m^3	mBq/m^3	mBq/m^3	mBq/m^3	mBq/m^3	mBq/m^3
試彩	量(m ³)	1434	1252	1145	1570	1283	1204
Ge検は	出器番号	2	1	1	1	2	2
測定時間 (ライブタイム ; 秒)		80000	80000	80000	80000	80000	80000
ĺ	備考						

(注)NDであって、スペクトル上で光電ピークが認められた場合、検出下限値をカッコ()書きで示す。

* 参考として記載した。

表-18 指標植物の核種分析結果

퀵	· 兆 夕	FE	ギ
	N 147 泊	芽	
採	取地点	石巻市谷川浜	大崎市岩出山
採	取月日	2023. 7. 4	2023. 7. 5
討	、料番号	23IL0051	23IL0052
	Be- 7	142 ± 1	77.2 ± 0.7
	K - 40	336 ± 2	306 ± 2
长柱	Pb-210	-	-
<i>加</i> 又为 拒	Cs-134	N D	N D
	Cs-137	0.34 ± 0.03	3.05 ± 0.05
	単位	Bq/kg生	Bq/kg生
試彩	ŀ量(kg生)	1.63	1.87
Ŀ	灭分(%)	3.75	3.19
Ge検	出器番号	2	2
測定時間 (ライブタイム : 秒)		80000	80000
	備考		対照地点

表-19 魚介類の核種分析結果(1)

=		アイナメ		マズ	ボヤ	
口 日 日	4 科 名	皮・筋肉	筋肉層	肝部*	筋肉層	肝部*
捋	采取地点	女川原子力発電所 前面海域	女川町小屋取		女川町塚浜	
捋	采取月日	2023. 7. 12	2023.	4.18	2023.	4.17
痯	\$料番号	23MP0058	23MP0009	23MP0010	23MP0006	23MP0007
	Be- 7	N D	6.9 ± 0.2	427 ± 2	5.9 \pm 0.2	374 ± 2
	K - 40	128.4 ± 0.8	90.8 \pm 0.8	74.5 ± 1.0	87.3±0.7	81±1
长舟	Pb-210	-	-	8.0 ± 0.3	-	7.7 ± 0.3
放射	Cs-134	N D	N D	N D	N D	N D
	Cs-137	0.16 ± 0.01	N D	N D	N D	N D
	単位	Bq/kg生	Bq/kg生	Bq/kg生	Bq/kg生	Bq/kg生
試彩	¥量(kg生)	3.00	2.00	0.95	2.00	0.79
Ŀ	灭分(%)	1.83	2.39	2.64	2.40	2.62
Ge椅	食出器番号	2	2	1	2	1
測定時間 (ライブタイム ; 秒)		80000	80000	80000	80000	80000
	備考					

* 参考として記載した。

表-20 魚介類の核種分析結果(2)

-									
	P	エゾフ	アワビ		マガ	+			
D _T	N 147 741	軟体部 (除内臓)	内臓部*	軟体部					
捋	采取地点	女川原子力発電所放水口付近		女川町野々浜	女川町尾浦	石巻市分浜	気仙沼湾 (気仙沼市)		
採	采取月日	2023.	11.27	2023.11.16	2023.11.16	2023.11.20	2023. 11. 24		
	、料番号	23MP0119	23MP0120	23MP0111	23MP0110	23MP0114	23MP0118		
	Be- 7	0.47 ± 0.12	2.4 ± 0.2	0.91 ± 0.13	1.9 ± 0.1	1.4 ± 0.1	0.78 ± 0.13		
	K - 40	69.2 ± 0.7	55.4 ± 0.9	71.0 ± 0.7	68.3±0.6	71.6 ± 0.7	82.3±0.8		
七日七	Pb-210	-	5.4 ± 0.2	1.2 ± 0.1	-	-	2.3 ± 0.2		
放射 E	Cs-134	N D	N D	N D	N D	N D	N D		
	Cs-137	(0.036)	N D	(0.040)	0.034 ± 0.011	N D	N D		
	単位	Bq/kg生	Bq/kg生	Bq/kg生	Bq/kg生	Bq/kg生	Bq/kg生		
試彩	∤量(kg生)	2.00	0.94	2.00	2.00	2.00	2.00		
Ŀ	灭分(%)	2.56	3.24	2.51	2.21	2.49	2.63		
Ge椅	自器番号	2	1	1	2	2	1		
測定時間 (ライブタイム ; 秒)		80000	80000	80000	80000	80000	80000		
	備考						対照地点		

(注)NDであって、スペクトル上で光電ピークが認められた場合、検出下限値をカッコ()書きで示す。

* 参考として記載した。

表-21 海藻の核種分析結果

=	2 11 万	ワク	カメ
Ē	N 147 泊	葉	部
採取地点		女川原子力発電所 放水口付近	女川原子力発電所 前面海域
採	、取月日	2023. 4. 19	2023. 4. 4
칾	、料番号	23MP0011	23MP0002
	Be- 7	1.2 ± 0.2	N D
	K - 40	183 ± 1	197 ± 1
北伯子台	Pb-210	-	-
成初阳	Cs-134	N D	N D
	Cs-137	N D	N D
	単位	Bq/kg生	Bq/kg生
試彩	↓量(kg生)	1.50	1.50
Ŀ	灭分(%)	3.89	3.82
Ge検	出器番号	2	2
測 (ライン	定時間 ブタイム ; 秒)	80000	80000
	備考		

表-22 海水の核種分析結果

4:	* *1. 夕		海水						
Ē ^L	147 泊	表 層 水							
採	取地点	女川原子力発電所 放水口付近		鮫浦湾(鮫浦湾 (石巻市)				
採	取月日	2023. 5. 9	2023.11.8	2023. 5. 24	2023.11.15	2023. 10. 17			
試	料番号	23SW0026	23SW0127	23SW0029	23SW0130	23SW0095			
	Cs-134	N D	N D	N D	N D	N D			
放射能	Cs-137	N D	(2.2)	(2.0)	N D	N D			
	単位	mBq/L	mBq/L	mBq/L	mBq/L	mBq/L			
試	料量(L)	20.0	20.0	20.0	20.0	20.0			
Ge検	出器番号	2	1	2	2	1			
測定時間 (ライブタイム ; 秒)		80000	80000	80000	80000	80000			
	備考					対照地点			

(注)NDであって、スペクトル上で光電ピークが認められた場合、検出下限値をカッコ()書きで示す。

表-23 海底土の核種分析結果

46	来 夕			海底土			
μ.	147 泊			表 層 土			
採	取地点	女川原子力発電所 放水口付近		鮫浦湾(鮫浦湾 (石巻市)		
採	取月日	2023. 5. 9	2023. 11. 8	2023. 5. 24	2023.11.15	2023. 10. 17	
試	料番号	23SS0019	23SS0109	23SS0028	23SS0128	23SS0094	
	Be- 7	N D	N D	N D	N D	N D	
	K - 40	506 ± 9	520 ± 9	463 ± 9	480 ± 10	380 ± 9	
	Pb-212	16.1 ± 0.6	14.9 ± 0.6	20.1 ± 0.7	20.1 ± 0.8	11.7 ± 0.6	
放射能*	Pb-214	12.4 ± 0.7	11.2 ± 0.7	11.9 ± 0.9	13 ± 1	10.4 ± 0.8	
	Cs-134	N D	N D	N D	N D	N D	
	Cs-137	(0.68)	0.77 ± 0.22	4.6 ± 0.4	6.9 ± 0.4	4.0 ± 0.3	
	単位	Bq/kg乾土	Bq/kg乾土	Bq/kg乾土	Bq/kg乾土	Bq/kg乾土	
試料量	量(g乾土)	134	129	112	107	131	
Ge検	出器番号	2	2	2	1	1	
測定時間 (ライブタイム ; 秒)		80000	80000	80000	80000	80000	
	備考					対照地点	

(注)NDであって、スペクトル上で光電ピークが認められた場合、検出下限値をカッコ()書きで示す。

* Th系列とU系列の代表的なγ線放出核種であるPb-212とPb-214については概ねTh-232及びU-238と放射平衡と見なせるため、 参考のため掲載した。

表-24 指標海産物の核種分析結果(1)

=-	4 - 1 - 4 - 4			۲ :	ラメ		
TT	入村名			葉	部		
捋	采取地点	女川原子力発	電所放水口付近	牡鹿半島北側((石巻市十三浜)	牡鹿半島西側	(東松島市宮戸)
捋	兵取月日	2023. 8. 7	2023.11.9	2023. 8. 21	2023. 11. 13	2023. 8. 21	
許	 、料番号	23IS0067	23IS0105	23IS0074	23IS0107	23IS0071	
	Be- 7	1.6 ± 0.3	1.2 ± 0.3	N D	1.0 ± 0.3	N D	
	K - 40	278 ± 2	365 ± 2	250 ± 2	350 ± 2	227 ± 2	
	Pb-210	N D	(1.0)	N D	N D	N D	
放射能	Cs-134	N D	N D	N D	N D	N D	
	Cs-137	(0.089)	(0.096)	0.081 ± 0.027	(0.092)	0.13 ± 0.03	
	I-131 ^{*1}	N D	N D	N D	N D	0.34 ± 0.04	
	単位	Bq/kg生	Bq/kg生	Bq/kg生	Bq/kg生	Bq/kg生	
灰化法	試料量(kg生)	1.20	1.20	1.20	1.20	1.20	
迅速法	試料量(kg生)	2.10	2.03	1.99	1.96	1.90	
E	灭分(%)	5.10	4.99	4.24	4.93	3. 77	
Ge椅	自器番号	1	1	1	1	1	
浪 (ライン	定時間 ブタイム ; 秒)	80000	80000	80000	80000	80000	
	備考	迅速法における その他検出核種 Cs-137:(0.098)	迅速法における その他検出核種 Cs-137: (0.11)	対照海域	対照海域	対照海域 迅速法における その他検出核種 Cs-137: 0.18+0.03	対照海域 *2

(注)NDであって、スペクトル上で光電ピークが認められた場合、検出下限値をカッコ()書きで示す。

*1 I-131は生試料を粉砕後、マリネリ容器にて測定する迅速法による結果である。

*2 生育が確認できず採取できなかったため欠測となった。

表-25 指標海産物の核種分析結果(2)

34	1 半 夕			エゾノネ	ネジモク		
p ¹	V 147 70			除付	着器		
捋	采取地点	女川原子力発行	電所放水口付近	牡鹿半島北側((石巻市十三浜)	牡鹿半島西側	(石巻市小竹浜)
捋	采取月日	2023. 5. 15	2024. 2. 15	2023. 5. 16	2024. 2. 7	2023. 5. 16	2024. 2. 7
詐	 、料番号	23IS0021	23IS0153	23IS0025	23IS0151	23IS0023	23IS0149
	Be- 7	N D	1.8 ± 0.3	1.4 ± 0.2	N D	N D	N D
	K - 40	296 ± 2	250 ± 2	360 ± 2	344 ± 2	318 ± 2	289 ± 2
	Pb-210	-	2.0 ± 0.3	-	N D	-	N D
放射能	Cs-134	N D	N D	N D	N D	N D	N D
	Cs-137	N D	N D	0.18 ± 0.03	N D	0.11 ± 0.03	N D
	I-131*	N D	N D	N D	N D	N D	0.21 ± 0.04
	単位	Bq/kg生	Bq/kg生	Bq/kg生	Bq/kg生	Bq/kg生	Bq/kg生
灰化法	試料量(kg生)	1.20	1.20	1.20	1.20	1.20	1.20
迅速法	試料量(kg生)	1.50	1.44	1.63	1.54	1.46	1.47
Ŀ	灭分(%)	4.85	5. 30	4. 92	4.86	4.70	4.73
Ge椅	自器番号	2	1	2	1	2	1
沮 (ライン	定時間 ブタイム ; 秒)	80000	80000	80000	80000	80000	80000
	備考			対照海域 迅速法における その他検出核種 Cs-137: 0.40±0.04	対照海域	対照海域	対照海域

* I-131は生試料を粉砕後、マリネリ容器にて測る迅速法による結果である。

34	· 坐L 夕	ムラサギ	キイガイ
<u> </u>	AP1 2□	軟体	本部
採	取地点	女川原子力発	電所前面海域
採	取月日	2023. 4. 4	2023. 10. 16
討	料番号	23IS0001	23IS0093
	Be- 7	3.1 ± 0.2	1.6 ± 0.1
	K - 40	80.9 ± 0.7	67.4 ± 0.7
七日十七日	Pb-210	-	2.3 ± 0.2
瓜豹肥	Cs-134	N D	N D
	Cs-137	(0.034)	N D
	単位	Bq/kg生	Bq/kg生
試料	·量(kg生)	2.00	2.00
U D	灭分(%)	2.37	2.38
Ge検	出器番号	2	1
<u>測</u> (ライフ	定時間 ^ブ タイム ; 秒)	80000	80000
	備考		

表-26 指標海産物の核種分析結果(3)

(注)NDであって、スペクトル上で光電ピークが認められた場合、検出下限値をカッコ()書きで示す。

参考1 指標植物の核種分析結果

긢	* */ 夕	FE	モギ
Ē	N 147 泊	Ē	
採	、取地点	石巻市谷川浜	大崎市岩出山
採	、取月日	2023. 7. 4	2023.7.5
	、料番号	23IL0068	23IL0069
	Be- 7	43.8±0.9	15.6 ± 0.6
	K - 40	214 ± 1	207 ± 1
七日十七日	Pb-210	4.2 ± 0.2	1.2 ± 0.2
	Cs-134	N D	N D
	Cs-137	0.21 ± 0.02	1.40 ± 0.03
	単位	Bq/kg生	Bq/kg生
試彩	↓量(kg生)	2.25	2.69
Ŀ	灭分(%)	2.09	1.88
Ge検	出器番号	1	1
〕 (ライン	定時間 ブタイム ; 秒)	80000	80000
	備考		

参考2 指標海産物の核種分析結果

킛	4 平 々		アラ	ラメ	
ΠĻ	く 村子 泊				
捋	采取地点	牡鹿半島北側(石巻市十三浜)	牡鹿半島西側(〔東松島市宮戸〕
捋	采取月日	2023. 8. 21	2023.11.13	2023. 8. 21	
	(料番号	23IS0075	23IS0108	23IS0072	
	Be- 7	N D	N D	N D	
	K - 40	341 ± 2	383 ± 2	359 ± 2	
十分自主会出	Pb-210	N D	N D	N D	
成别拒	Cs-134	N D	N D	N D	
	Cs-137	0.12 ± 0.04	N D	0.16 ± 0.03	
	単位	Bq/kg生	Bq/kg生	Bq/kg生	
試彩	∤量(kg生)	0.92	1.20	1.20	
厄	灭分(%)	5.78	5.64	5.19	
Ge椅	起器番号	1	1	1	
沮 (ライン	定時間 ブタイム ; 秒)	80000	80000	80000	
	備考				*

* 生育が確認できず採取できなかったため欠測となった。

(2) Sr-90分析結果

また な	立777年	这更至近	拉 斯年日日	Sr-90 濃	度	Ca濃度	Sr単位
武州石	司的卫	抹取地点	休取平月日	測定値	単 位	(g/kg生)	(Bq/g•Ca)
精米	—	石巻市谷川浜	2023.11. 1	N D		0.05	N D
		石巻市谷川浜	2023. 7. 4	0.36 ± 0.03		2.56	0.14±0.01
ヨモギ	葉	大崎市岩出山 (対照地点)	2023. 7. 5	0.71 ± 0.04		2.56	0.28 ± 0.02
アイナメ	皮・筋肉	女川原子力発電所 前面海域	2023. 7.12	N D		1.72	N D
マボヤ	筋肉層	女川町小屋取	2023. 4.18	N D	Bq/kg生	0.22	N D
		女川町野々浜	2023. 11. 16	N D		0.40	N D
マガキ	軟体部	気仙沼湾 (対照地点)	2023. 11. 24	N D		0.31	N D
ワカメ	葉部		2023. 4.19	N D		0.87	N D
アラメ	葉部	女川原子力発電所 放水口付近	2023. 8. 7	N D		4.85	N D
エゾノ ネジモク	除付着器		2024. 2.15	N D		2.88	N D

表-27 Sr-90の分析結果

(3) H-3分析結果

表-28 H-3の分析結果

試 彩	▶ 名	採取地点	採取年月日	H-3 濃	变
				測 定 値	単 位
		ナ川町ナ川浜	2023. 7. 4	N D	
陆水	水洋百水	女川町女川供	2024. 1.11	N D	
座小	小迫床小	工类古油汇业	2023. 7. 4	N D	
		石仓川伯供养	2024. 1.11	N D	mBq/L
		女川原子力発電所	2023. 5. 9	N D	
海 水	表 層 水	放水口付近	2023.11. 8	N D	
		気仙沼湾 (対照地点)	2023. 10. 17	N D	

* 令和5年6月1日以降、採取地点を前網から泊浜に変更している。

(4) 原子力規制庁委託調査結果

表-29 大気浮遊じんのゲルマニウム半導体検出器を用いた核種分析調査結果報告

_					
	ORIEC社製 GEM型	鉄158mm	FWHM=1.87keV (Co-60, 1332keV)	26.98%	80
于道:"今天我??"	ケルマニワムギ導体検出希型式	遮蔽体の厚み(mm)	计解论	(%) 率位科时	浜陸と称の名称と型法

			1	
HV-1000R	60	ガラス繊維ろ紙GB-100K	203×254	打ち抜き
集じん器名	集じん流速 (m ³ /時)	集にんろ紙の種類	(^{uuu}) ズナ ム	試料処理法

	備考				
生計量	(m ³)	17479	15925	15742	15759
음 12 411	(m ³)	33614	30626	30273	30305
	経度 (度分秒)	140度54分20.999秒	140度54分20.999秒	140度54分20.999秒	140度54分20.999秒
	緯度 (度分秒)	38度16分39.000秒	38度16分39.000秒	38度16分39.000秒	38度16分39.000秒
試料採取場所	住所	宮城県仙台市宮城野区幸町4丁目7番1-2号	宮城県仙台市宮城野区幸町4丁目7番1-2号	宮城県仙台市宮城野区幸町4丁目7番1-2号	宮城県仙台市宮城野区幸町4丁目7番1-2号
48 89	·郑围 ~年月日	2023.6.16	2023.9.15	2023.12.8	2024.3.14
- 田 - 近千	™ 年月日~	2023.4.5	2023.7.3	2023.10.4	2024.1.26
	試料番号	23AE0044	23AE0082	23AE0129	23AE0161

測定年月 「河水ボ県」 F-131 Cs-134 Cs-137 (ライブタイム:秒) (mBq/m ³) (mBq/m ³) (mBq/m ³) (mBq/m ³) 2023.6.16 80000 N D N D 0.0034±0.00074 (mBq/m ³) 2023.9.15 80000 N D N D 0.0057±0.0010 (mBq/m ³) 2023.12.8 80000 N D N D 0.0057±0.0010 (mBq/m ³) 2023.12.8 80000 N D N D 0.0057±0.0010 (mBq/m ³) 2023.12.8 80000 N D N D 0.0057±0.0010 (m D (m D		日本			核種別放射	濃度
2023.6.16 (mBq/m ³) (mBq/m ³) (mBq/m ³) (mBq/m ³) 2023.6.15 80000 N D N D 0.0034±0.00074 0 0 2023.9.15 80000 N D N D 0.0057±0.0010 0 0 0 2023.9.13.8 80000 N D N D 0.0057±0.0010 0	測定年月日) 浜 江 百回 (一人人人・学)	I-131	Cs-134	Cs-137	
2023.6.16 80000 ND ND 0.0034±0.00074 Common commo			(mBq/m³)	(mBq∕m³)	(mBq/m ³)	
2023.9.15 80000 N D N D 0.0057±0.0010 M M M 2023.12.8 80000 N D N D N D N D M D	2023.6.16	80000	U N	U N	0.0034 ± 0.00074	
2023.12.8 80000 ND ND ND 2024.3.14 80000 ND ND ND	2023.9.15	00008	d n	U N	0.0057±0.0010	
2024.3.14 80000 N.D. N.D. N.D. N.D.	2023.12.8	00008	U N	U N	N D	
	 2024.3.14	00008	d n	U N	D N	

球堤欧豹 胞小牛詞 亘 107 成木 こり。 大心したちをする 日、田 坂宗 ひ、 いま メネッジルス31 HE ハン・十 ロリ 旦 このナータは、原ナノ規制庁の原ナノ施設寺的炎沟東寺安託賞 表-30 降下物のゲルマニウム半導体検出器を用いた核種分析調査結果報告

Г

ゲルマニウム半導体検出器型式	ORTEC社製 GEM型
遮蔽体の厚み(mm)	鉄158mm
分解能	FWHM=1.87keV (Co-60, 1332keV)
相対効率 (%)	26.98%
測定容器の名称と型式	U8

設置型	とつくそと	8	5000.0	
大型水盤型式	材質	(mm) 42直	受水面積(cm ²)	

	備考	隆水量は気象庁 発まのはんいたいた	光衣の値(1110.1を)記載										
=÷=#/) 、 (L)	32.60	52.45	72.30	83.95	17.85	113.40	25.00	31.85	24.40	54.30	45.05	39.30
司品	1本4X里 (L)	32.60	52.45	72.30	83.95	17.85	113.40	25.00	31.85	24.40	54.30	45.05	39.30
医子宫	降小里 (mm)	47.5	124.5	174.5	154.0	30.0	274.0	44.5	45.0	53.5	0.07	60.5	104.5
	経度 (度分秒)	140度54分20.999秒											
所	緯度 (度分秒)	38度16分39.000秒											
[住所	宮城県仙台市宮城野区幸町4丁目7番1-2号											
	採取日数	28	32	33	30	32	32	31	31	98	28	08	33
48 P.B	^{朔间} ~年月日	2023.5.1	2023.6.1	2023.7.3	2023.8.1	2023.9.1	2023.10.2	2023.11.1	2023.12.1	2024.1.5	2024.2.1	2024.3.1	2024.4.2
留鲜	/≭₩ 年月日~	2023.4.4	2023.5.1	2023.6.1	2023.7.3	2023.8.1	2023.9.1	2023.10.2	2023.11.1	2023.12.1	2024.1.5	2024.2.1	2024.3.1
	試料番号	23F00012	23FO0032	23FO0045	23FO0059	23FO0076	23FO0084	23FO0096	23FO0124	23FO0134	23FO0142	23FO0155	23FO0163

仪性 20 以33 胎派这													
Cs-137	(Bq/m ²)	1.1 ± 0.033	0.38 ± 0.022	0.17 ± 0.017	0.081± 0.016	0.17 ± 0.017	0.13 ± 0.016	2.5 ± 0.046	0.29 ± 0.021	0.14 ± 0.017	0.29 ± 0.021	0.58 ± 0.025	0.38±0.022
Cs-134	(Bq/m^2)	d N	d N	d N	U N	U N	U N	U N	U N	d N	d N	d N	d N
I-131	(Bq/m ²)	D N	d N	d N	ΩN	ΩN	U N	ΩN	U N	U N	U N	U N	D N
測定時間	(フイノダイム;秒)	80000	00008	00008	80000	80000	80000	80000	80000	00008	00008	00008	00008
測定年月日		2023.5.12	2023.6.12	2023.7.18	2023.8.14	2023.9.11	2023.10.17	2023.11.10	2023.12.11	2024.1.15	2024.2.9	2024.3.8	2024.4.10
試料番号		23FO0012	23FO0032	23FO0045	23FO0059	23FO0076	23FO0084	23FO0096	23FO0124	23FO0134	23FO0142	23FO0155	23FO0163
	就料番号	試料番号 測定年月日 (ライブタイム:秒) 1-131 Cs-134 Cs-137 nata: market A (ライブタイム:秒) (Bq/m ²) (Bq/m ²) (Bq/m ²) (Bq/m ²)	試料番号	試料番号 測定年月日						批判者号 加定年月	試料番号 測定年月日 測定年月日 測定年月日 (ライプタイム:利) 1-131 Cs-134 Cs-137 (Add/m) (Bd/m) (Bd/m) (Bd/m) (Bd/m) (Bd/m) (Bd/m) (Bd/m) (Add/m) (Bd/m) (Add/m) (Add/m) (Add/m) (Bd/m) (Add/m) (Bd/m) (Add/m) (Add/m)	試料番号 測定年月日	

表-31 陸水(上水、淡水)のゲルマニウム半導体検出器を用いた核種分析調査結果報告

ゲルマニウム半導体検出器型式	ORTEC社製 GEM型
遮蔽体の厚み (mm)	鉄158mm
分解能	FWHM=1.87keV (Co-60, 1332keV)
相対効率 (%)	26.98%
測定容器の名称と型式	U8

			1
	備考		
出計量	(L)	100	
蒸発	残留物 (mg/L)	64.7	
見水	(°C)	21.5	
	Hq	7.43	
	経度 (度分秒)	140度54分20.999秒	
	緯度 (度分秒)	38度16分39.000秒	
武料採取場所	住所	宮城県仙台市宮城野区幸町4丁目7番1-2号	
	採取年月日	2023.6.9	
	試料名	下水	
	試料番号	23LW0039	

					松狸 別 以外 目に涼	夏 茂
試料番号	測定年月日	三日日回()(山人人人・学))	I-131	Cs-134	Cs-137	
			(mBq/L)	(mBq/L)	(mBq/L)	
23LW0039	2023.6.21	80000	ΝD	U N	0.51 ± 0.089	

表-32 土壌のゲルマニウム半導体検出器を用いた核種分析調査結果報告

ORTEC社製 GEM型	鉄158mm	FWHM=1.78keV (Co-60, 1332keV)	27.38%	U8
ゲルマニウム半導体検出器型式	遮蔽体の厚み(mm)	分解能	相対効率 (%)	測定容器の名称と型式

		11111111111111111111111111111111111111	採取場所				How Har We	一 ~ 占 空	乾燥		
	採取年月日	住所	緯度 (度分秒)	経度 (度分秒)	採取層(cm)	採取法	₁ 未4X.围 積(cm ²)	採収至重 (g)	細土 * (g乾土)	(兵政重 (g乾土)	備考
	2023.6.14	宮城県大崎市岩出山	38度39分24.115秒	140度51分36.711秒	$0 \sim 5$	採取器	157	939.2	536.4	91.84	
	2023.6.14	宮城県大崎市岩出山	38度39分24.115秒	140度51分36.711秒	$5 \sim 20$	採取器	157	3801.9	2712.2	108.56	
]											
				核種別放射能》	濃度						
	巡浜時间(ーイブタイン・学)	Cs-134	Cs-	-137							
	~~~~		, - <del>11</del> - ,	ć							

(MBq/km²) 13318 7770

(MBq/km²) 314 173

(Bq/kg乾土)

390 ± 2.1 (Bq/kg乾土)

> 9.2 土 0.45  $1.0 \pm 0.24$

80000 80000

2023.6.22

23LS0042

45 土 0.71

23LS0043 2023.6.23 * 2mmフルイ通過後の全量

表-33 精米のゲルマニウム半導体検出器を用いた核種分析調査結果報告

ORTEC社製 GEM型	鉄158mm	FWHM=1.87keV (Co-60, 1332keV)	26.98%	2Lマリネリ
ゲルマニウム半導体検出器型式	遮蔽体の厚み (mm)	分解能	相対効率 (%)	測定容器の名称と型式

	備考		
任計量	にいま (kg生)	1.899	
	経度 (度分秒)	141度17分48秒	
即場所	緯度 (度分秒)	38度26分45秒	
高式米斗子米	住所	宮城県石巻市南境	
	採取年月日	2023.11.21	
	種類	精米	
	試料名	穀類	
	試料番号	23VG0115	

核種別放射能濃度	Cs-137 (Bq/kg生)	ND			
	Cs-134 (Bq/kg生)	ΝD			
	I-131 (Bq/kg生)	ΝD			
88 +a 📥 Juž.	測定時間 (ライブタイム: 秒)				
	測定年月日	2023.11.21			
	試料番号	23VG0115			

### 資料2 環境試料の放射化学分析結果

(高度調査解析委託業務)

### 1 まえがき

高度調査解析委託業務として、(公財)日本分析センターに委託して環境試料中のプルトニウム (²³⁸Pu、²³⁹Pu、²⁴⁰Pu)及び放射性ストロンチウム(⁹⁰Sr)の放射化学分析を実施した。

### 2 分析方法

### (1) 試料と分析項目

表1に分析試料と分析項目の一覧を示す。試料は全て宮城県内で採取したものである。

### (2) プルトニウム (²³⁸Pu、²³⁹⁺²⁴⁰Pu)の分析

文部科学省放射能測定法シリーズ12「プルトニウム分析法」(平成2年改訂)に準じた。

化学分離については、陸土は試料を500℃で加熱後、²⁴²Pu回収率補正用トレーサーを添加し、硝酸を加 えて加熱抽出した。陰イオン交換樹脂カラム法で分離・精製したプルトニウムをステンレス鋼板上に電 着し、測定試料とした。

測定については、シリコン半導体検出器(ORTEC社製 BU-020-450-AS)を用いて、測定試料を80000 秒以上測定し、²³⁸Pu及び²³⁹⁺²⁴⁰Pu放射能濃度を算出した。

### (3) プルトニウム (²³⁹Pu、²⁴⁰Pu) の分析

文部科学省放射能測定法シリーズ28「環境試料中プルトニウム迅速分析法」(平成14年)に準じた。 化学分離については、陸土及び海底土は試料を500℃で加熱後、²⁴²Pu回収率補正用トレーサーを添加 し、硝酸を加えて加熱抽出した。アラメ及びエゾノネジモクは試料に²⁴²Pu回収率補正用トレーサーを添 加し、硝酸を加えて加熱分解して抽出した。陰イオン交換樹脂カラム法で分離・精製したプルトニウム を硝酸に溶解し、測定試料とした。

測定については、ICP質量分析装置(サーモフィッシャーサイエンティフィック社製 ELEMENT 2)を 用いて、測定試料をプラズマ中に噴霧し、²⁴²Puに対する²³⁹Pu及び²⁴⁰Puのイオン強度から、それぞれの放 射能濃度を算出した。

### (4) 放射性ストロンチウム (⁹⁰Sr) の分析

文部科学省放射能測定法シリーズ2「放射性ストロンチウム分析法」(平成15年改訂)に準じた。

化学分離については、陸土及び海底土は試料を500℃で加熱後、ストロンチウム担体を添加し、塩酸を 加えて加熱抽出した。陸水は試料にストロンチウム担体を添加し、加熱濃縮した。イオン交換法により ストロンチウムを分離・精製後、2週間放置して試料中のストロンチウム90(⁹⁰Sr)から新たに生成した イットリウム90(⁹⁰Y)を水酸化鉄(Ⅲ)沈殿に共沈させ、測定試料とした。

測定については、低バックグラウンドβ線測定装置(アロカ社製 LBC-471Q、LBC-4201)を用いて、 測定試料を原則として3600秒間測定し、⁹⁰Yの放射能から⁹⁰Srの放射能濃度を算出した。

### 表1 分析試料及び分析項目一覧(令和5年度)

計判夕	<b>坎</b> 币 坦 正		<b>坎</b> 历 年 日 日	分析項	目(対象に	20印)
	1禾収物内	1111	1禾収千万日	Pu( $\alpha$ )	Pu(ICP)	⁹⁰ Sr
	石巻市新栄 (石巻稲井局近傍)	*2	2023.10. 4	0		0
	石巻市桃浦 (石巻桃浦局)	*2	2023. 9.29	0		0
	石巻市荻浜 (荻浜MS*1)	*2	2023. 9.29	0		0
	石巻市田代浜 (田代島局)	*2	2023.10. 3	0		0
	石巻市相野谷 (河北局近傍)	*2	2023.10. 4	0		0
陸土	石巻市雄勝町大須 (雄勝局近傍)	*2	2023.10. 4	0		0
	石巻市須江 (河南局)	*2	2023.10. 4	0		0
	石巻市北上町 十三浜(北上局)	*2	2023.10. 4	0		0
	石巻市長渡浜杉 (網地島局)	*2	2023.10. 3	0		0
	石巻市鮎川浜 (牡鹿清崎局)	*2	2023. 9.27	0		0
	大崎市岩出山	*2	2023. 6.14		0	$\bigcirc$
	女川原子力発電所 放水口付近	*2	2023. 5. 9		0	0
海底土	鮫浦湾(石巻市)	*2	2022. 11. 14		0	0
	気仙沼湾 (気仙沼市)	*2	2022. 10. 17		0	0
	女川町 (女川浄水場)	*3	2023. 10. 31			0
	石巻市 (須江山浄水場)	*3	2023.11. 1			0
陸水	石巻市 (六本木浄水場)	*3	2023.11. 1			0
	登米市 (大萱沢浄水場)	*3	2023. 10. 30			0
	南三陸町(新戸倉浄水場)	*3	2023. 10. 30			0
	女川原子力発電所 放水口付近	*4	2022. 8. 3		0	
アラメ	石巻市十三浜	*4	2022. 8.22		0	
	東松島市宮戸	*4	2022. 8.22		0	
エゾノ	女川原子力発電所 放水口付近	*4	2023. 5.15		0	
ネジモク	石巻市十三浜	*4	2023. 5.16		0	
	石巻市小竹浜	*4	2023. 5.16		0	

Pu(α): α 線スペクトロメトリーによる²³⁸Pu及び²³⁹⁺²⁴⁰Puの定量

Pu(ICP): ICP 質量分析装置(ICP-MS)による²³⁹Pu及び²⁴⁰Puの定量

*1 MS:モニタリングステーション

*2 性状:乾燥土壤(粒径 < 2 mm)

*3 性状:水道原水

*4 性状:灰(粒径 < 0.59mm)

### 3 分析結果

表2にα線スペクトロメトリーによるプルトニウム分析の結果を、表3にICP質量分析装置による プルトニウム分析の結果を、表4にストロンチウムの分析結果を示す。α線スペクトロメトリーにお いては、陸土6試料から²³⁹⁺²⁴⁰Puが検出され、ICP質量分析においては、全ての試料から²³⁹Pu及び²⁴⁰Pu が検出されたが、その値は、過去の測定値と同程度であった。⁹⁰Srについては、陸土5試料及び陸水5 試料から検出されたが、その値は、陸土では過去の測定値と同程度、陸水では1mBq/L以下であっ た。

表2 α線スペクトロメトリーによるプルトニウム同位体分析結果(令和5年度)

試料名	採取場所	採取年月日	測定日	²³⁸ Pu	²³⁹⁺²⁴⁰ Pu	単位	
	石巻市新栄 (石巻稲井局近傍)	2023.10. 4		N D	N D		
·** -	石巻市桃浦 (石巻桃浦局)	2022 0.20	2024. 2. 1	N D	$0.021 \pm 0.0050$		
	石巻市荻浜 (荻浜MS)	2023. 9.29		N D	$0.025 \pm 0.0053$		
	石巻市田代浜 (田代島局)	2023.10. 3		N D	$0.042 \pm 0.0069$		
	石巻市相野谷 (河北局近傍)	2022 10 4		N D	$0.017 \pm 0.0040$	Bq/kg	
座上	石巻市雄勝町大須 (雄勝局近傍)			N D	N D	乾土	
	石巻市須江 (河南局)	2023.10. 4		N D	N D		
	石巻市北上町 十三浜(北上局)			N D	$0.010 \pm 0.0032$		
	石巻市長渡浜杉 (網地島局)	2023.10. 3		N D	$0.043 \pm 0.0065$		
	石巻市鮎川浜 (牡鹿清崎局)	2023. 9.27		N D	N D		

表3 ICP-MS法によるプルトニウム同位体分析結果(令和5年度)

試料名	採取場所	採取年月日	測定日	²³⁹ Pu	²⁴⁰ Pu	単位	
陸土	大崎市岩出山	2023. 6.14		$0.042 \pm 0.0009$	$0.026 \pm 0.0004$		
	女川原子力発電所 放水口付近	2023. 5. 9	2024. 1.29	$0.069 \pm 0.0007$	$0.062 \pm 0.0006$	Bq/kg 乾土	
海底土	鮫浦湾 (石巻市)	2022. 11. 14	2021. 1.20	$0.12 \pm 0.0009$	$0.11 \pm 0.002$		
	気仙沼湾 (気仙沼市)	2022. 10. 17		0.34±0.002	$0.29 \pm 0.001$		
	女川原子力発電所 放水口付近	2022. 8. 3		$0.00085 \pm 0.000026$	$0.00073 \pm 0.000026$	Bq/kg	
アラメ	石巻市十三浜			$0.0012 \pm 0.00003$	$0.0010 \pm 0.00004$		
	東松島市宮戸	2022. 8.22	2024 2 0	$0.00065 \pm 0.000005$	$0.00058 \pm 0.000008$		
エゾノ	女川原子力発電所 放水口付近	2023. 5.15	2024. 2. 9	$0.0025 \pm 0.00005$	$0.0022 \pm 0.00004$	生	
ネジモ	石巻市十三浜	2022 E 16		$0.0023 \pm 0.00002$	$0.0021 \pm 0.00004$		
	石巻市小竹浜	2023. 5.10		$0.0018 \pm 0.00005$	$0.0016 \pm 0.00002$		

### 表4 ⁹⁰Sr の分析結果(令和5年度)

試料名	採取場所	採取年月日	測定日	⁹⁰ Sr	単位
	石巻市新栄 (石巻稲井局近傍)	2023.10. 4		$0.24 \pm 0.074$	
	石巻市桃浦 (石巻桃浦局)	2022 0 20		N D	
	石巻市荻浜 (荻浜MS)	2023. 9.29	2024. 1.30	0.31±0.082	
	石巻市田代浜 (田代島局)	2023.10. 3		N D	
陸土	石巻市相野谷 (河北局近傍)			N D	
	石巻市雄勝町大須 (雄勝局近傍)	9099 10 4	2024 1 21	N D	
	石巻市須江 (河南局)	2023.10. 4	2024. 1.31	N D	Bq∕kg
	石巻市北上町 十三浜(北上局)		2024. 2.22	$0.33 \pm 0.075$	乾土
	石巻市長渡浜杉 (網地島局)	2023.10. 3	2024 1 21	N D	
	石巻市鮎川浜 (牡鹿清崎局)	2023. 9.27	2024. 1.31	0.34±0.090	
	大崎市岩出山	2023. 6.14	2024. 2. 1	1.1±0.13	
	女川原子力発電所 放水口付近	2023. 5. 9	2024. 2. 1	N D	
海底土	鮫浦湾 (石巻市)	2022. 11. 14	2024. 2. 2	N D	
	気仙沼湾(気仙沼市)	2022. 10. 17	2024. 2. 1	N D	
	女川町 (女川浄水場)	2023. 10. 31		$0.64 \pm 0.13$	
	石巻市(須江山浄水場)	0000 11 1	2024. 1.22	$1.0 \pm 0.15$	
陸水	石巻市 (六本木浄水場)	2023.11. 1		0.89±0.15	mBq/L
	登米市 (大萱沢浄水場)	2022 10 20	2024. 1.23	$0.51 \pm 0.13$	
	南三陸町(新戸倉浄水場)	2023. 10. 30	2024. 1.22	$0.89 \pm 0.15$	

(参考) 十成10年度 かり卫伸 0 千度 よくの 同反 明且 胜灯 未伤の 時代及い 万切 旭木	(参考)	) 平成15年度*から令和5	年度までの高度調査解	¥析業務の試料及び会	}析結果一覽
---------------------------------------------------	------	----------------	------------	------------	--------

					- <b>J</b> VI/H /I		
試料名 (採取地点)	試料番号	試料採取日 又は採取期間	²³⁸ Pu	239+2- 239 _{P11}	⁴⁰ Pu ²⁴⁰ Pu	⁹⁰ Sr	単位
降下物(仙台市)	02F00008	$2001.12.3 \sim$ 2002.7.1	N D	2.2±	=0.4	$42 \pm 10$	
降下物(仙台市)	02F00102	$2002.7.1 \sim$ 2002.12.27	N D	N	D	N D	
降下物(山形市)	02F00104	2002.12.21 $2002.7.9 \sim$ 2002.1.0	N D	N	D	N D	
降下物(酒田市)	02F00103	2003. 1. 9 2002. 7. 8~	N D	2.5±	=0.8	N D	mBq/m ²
降下物(女川町)	02F00007	2003. 1. 8 2001. 12. 3~ 2002. 7. 5	N D	5.6±	=0.9	116±19	
降下物(女川町)	02F00101	2002. 7. 5~ 2002. 7. 5~	N D	N	D	N D	
 浮遊じん (女川町)	86AE0057	1986. 5. 7~	N D	N	D	N D	
		1986. 5. 8 2002. 4. 4 15:01					
浮遊じん(女川町)	02AE0003	~ 2002.4.8 15:30	N D	Ν	D	N D	
浮遊じん(女川町)	02AE0004	2002. 4. 8 15:37 $\sim$ 2002. 4. 11 9:01	N D	Ν	D	N D	$\mu  \mathrm{Bq/m}^3$
浮遊じん(女川町)	02AE0010	2002. 4. 11 9:00 $\sim$ 2002. 4. 15 11:37	N D	N	D	N D	
長 トナ ( ケ 川 町 )	0211.0122	1002 11 19	N D	0.080+	-0.022	N D	
▲上上壊(女川町) 屋上土壌(オ川町)	931L0133	1993.11.18	N D	0.000 L	D	N D	-
展上土壤(女川町) 展上土壤(女川町)	0211.0005	2002 4 11	N D	0.36+	-0.04	N D	
屋上土壤 (如台市)	9311.0096	1993 9 24	N D	0.24±	= 0. 01	N D	
屋上土壤 (仙台市)	93IL0127	1993.11.1	N D	0.093±	=0.025	N D	
山林土壌(女川町)	90IL0213	1990. 11. 30	0.85±0.02	2.6±	= 0.1	$6.0\pm 1.1$	
山林土壌(仙台市)	91IL0235	1992. 3. 2	N D	Ν	D	N D	1
陸土 (石巻市寄磯)	85LS0063	1985.6.10	N D	0.28±	0.022	4.6±0.48	
陸土 (石巻市寄磯)	90LS0064	1990.6.11	$0.014 \pm 0.004$	0.32±	=0.02	$6.4 \pm 0.5$	
陸土 (石巻市寄磯)	95LS0054	1995.6.21	$0.0176 \pm 0.0048$	0.32±	0.024	4.1±0.40	
陸土 (石巻市寄磯)	00LS0058	2000. 6. 21	N D	0.22±	0.018	$1.9 \pm 0.27$	
陸土(石巻市寄磯)	05LS0035	2005.6.7	N D	0.20±	=0.02	$1.6 \pm 0.2$	
陸土 (石巻市谷川浜)	10LS0036	2010.6.10	N D	0.028±	0.0054	-	
陸土(石巻市谷川浜)	15LS0029	2015.6.1	-	0.039	0.030	N D	
陸土(石巻市谷川浜)	20LS0031	2020. 6. 1	-	0.021	0.014	$0.28 \pm 0.090$	
陸土(大崎市岩出山 城山公園)	85LS0069	1985. 6. 17	N D	0.11±	0.013	$4.2\pm0.48$	
陸土(大崎市岩出山 城山公園)	90LS0066	1990. 6. 13	N D	0.082=	=0.011	$3.7\pm0.42$	
陸土(大崎市岩出山 城山公園)	95LS0053	1995. 6. 14	N D	0.126=	=0.013	$3.0\pm0.35$	D /1 +4 1
陸土(大崎市岩出山 城山公園)	00LS0057	2000. 6. 20	N D	0.11±	0.013	$2.4\pm0.30$	Bq/Kg乾工
陸土(大崎市岩出山 城山公園)	05LS0036	2005. 6. 20	N D	0.12±	=0.01	$2.2\pm0.3$	
陸土(大崎市岩出山 城山公園)	10LS0046	2010. 6. 21	N D	0.089=	0.011	-	
隆土(大崎巾宕出山 城山公園)	11LS0026	2011. 11. 24	-	0.060	0.037	1.9±0.16	
陸土(大崎市岩出山 城山公園 )	12LS0036	2012. 6. 13	N D	0.029±	0.0051	N D	
陸土(大崎市岩出山 城山公園 )	13LS0033	2013. 6. 11	N D	0.052	0.032	$1.1 \pm 0.14$	
陸土(大崎市岩出山 城山公園 )	14LS0041	2014. 6. 17	-	0.055	0.034	$1.6 \pm 0.16$	1
陸土(大崎市岩出山 城山公園 )	15LS0039	2015. 6. 11	—	0.057	0.035	$1.3 \pm 0.14$	1
陸土(大崎市岩出山 城山公園 )	16LS0039	2016.6.7	—	0.044	0.027	$2.0 \pm 0.18$	1
陸土(大崎市岩出山 城山公園 )	17LS0038	2017. 6. 19	_	0.064	0.041	$2.0 \pm 0.16$	]
陸土(大崎市岩出山 城山公園 )	18LS0039	2018. 6. 13	_	0.060	0.039	2.4±0.19	]
陸土(大崎市岩出山 城山公園 )	19LS0036	2019.6.13		0.067	0.041	$1.5 \pm 0.14$	]
陸土(大崎市岩出山 城山公園 )	20LS0037	2020. 6. 12	_	0.039	0.023	$1.6 \pm 0.16$	
陸土(大崎市岩出山 城山公園 )	21LS0032	2021.6.9	_	0.055	0.034	$1.5 \pm 0.15$	]
陸土(大崎市岩出山 城山公園 )	22LS0038	2022. 6. 22	_	0.048	0.030	$1.2 \pm 0.14$	
陸土(大崎市岩出山 城山公園 )	23LS0041	2023. 6. 14	_	0.042	0.026	1.1±0.13	
陸土(大崎市岩出山 八幡神社 )	90LS0220	1990. 12. 4	$0.038 \pm 0.007$	1.11±	=0.06	9.7 $\pm$ 0.6	

	카씨 포 모	試料採取日	238p	239+2	⁴⁰ Pu	900	举合
訊料名 (抹取地点)	<b></b> 八 仲 省 方	又は採取期間	Pu	²³⁹ Pu	²⁴⁰ Pu	Sr	甲位
陸土(女川町女川浜)	22LSBG001	2022. 12. 21	N D	Ν	D	$0.26 \pm 0.077$	
陸土(女川町浦宿浜)	22LSBG002	2022. 12. 20	N D	Ν	D	N D	
陸土(女川町尾浦)	22LSBG003	2022. 12. 21	N D	Ν	D	N D	
陸土(女川町指ケ浜)	22LSBG004	2022. 12. 20	N D	0.012±	0.0033	N D	
陸土(石巻市渡波)	22LSBG005	2022. 12. 20	N D	0.011±	0.0035	N D	
陸土 (東松島市小野)	22LSBG006	2022.12.14	N D	Ν	D	N D	
陸土(美里町二郷)	22LSBG007	2022. 12. 15	N D	Ν	D	N D	
陸土(涌谷町猪岡短台)	22LSBG008	2022.12.20	N D	Ν	D	N D	
陸土(登米市津山町柳津)	22LSBG009	2022.12.15	N D	N	D	N D	
陸土(南三陸町戸倉)	22LSBG010	2022.12.15	N D	N	D	N D	
陸土(石巻市新栄)	23LSBG001	2023.10.4	N D	Ν	D	$0.24 \pm 0.074$	
陸土(石巻市桃浦)	23LSBG002	2023. 9.29	N D	0.021±	0.0050	N D	
陸土 (石巻市荻浜)	23LSBG003	2023. 9.29	N D	$0.025 \pm$	0.0053	$0.31 \pm 0.082$	
陸土 (石巻市田代浜)	23LSBG004	2023.10. 3	N D	0.042±	0.0069	N D	
陸土(石巻市相野谷)	23LSBG005	2023.10.4	N D	$0.017 \pm$	0.0040	N D	
陸土 (石巻市雄勝町大須)	23LSBG006	2023.10.4	N D	Ν	D	N D	
陸土(石巻市須江)	23LSBG007	2023.10.4	N D	Ν	D	N D	
陸土 (石巻市北上町十三浜)	23LSBG008	2023.10.4	N D	$0.010 \pm$	0.0032	$0.33 \pm 0.075$	
陸十 (石巻市長渡浜杉)	23LSBG009	2023.10.3	N D	$0.043 \pm$	0.0065	N D	
陸十 (石巻市鮎川浜)	23LSBG010	2023 9.27	N D	N	D	$0.34 \pm 0.090$	
ヨモギ(谷川浜)	09110091	2009 7 15	N D	N	D	_	
ヨモギ(谷川浜)	1011.0055	2010. 7. 5	N D	N	D	-	
ヨモギ(谷川浜)	15IL0048	2015. 7. 7	-	0.00013	N D	-	
ヨモギ(大崎市岩出山)	091L0092	2009. 7. 22	N D	N	D	_	
ヨモギ(大崎市岩出山)	101L0058	2010. 7. 12	N D	N	D	_	
ヨモギ(大崎市岩出山)	15IL0049	2015. 7. 10	_	0.0033	0.0028	_	
海底土 (放水口付近)	09SS0142	2009.11.9	N D	0.29±	0.020	_	
海底土 (放水口付近)	10SS0133	2010.11.11	N D	0.26±	0.019	_	
				0.28±	0.018		
海底土 (放水口付近)	11SS0012	2011.11.15	N D	0.15	0.14	N D	
				0.33±	0.021		
海底土 (放水口付近)	12SS0116	2012.11.9	N D	0.18	0.16	N D	
海底土 (放水口付近)	13SS0119	2013.11.13	_	0.27	0.24	N D	Bq/kg乾土
海底土(放水口付近)	14SS0029	2014. 5. 19	_	0.084	0.075	N D	
海底土(放水口付近)	15SS0023	2015. 5. 20	-	0.088	0.078	N D	
海底土(放水口付近)	16SS0025	2016. 5. 24	-	0.053	0.048	N D	
海底土(放水口付近)	17SS0022	2017.5.9	-	0.11	0.097	N D	
海底土(放水口付近)	18SS0015	2018. 5. 16	-	0.047	0.042	N D	
海底土(放水口付近)	19SS0019	2019. 5. 14	-	0.087	0.078	N D	
海底土(放水口付近)	20SS0017	2020. 5. 12	-	0.052	0.046	N D	
海底土 (放水口付近)	21SS0014	2021. 5. 11	-	0.11	0.099	N D	
海底土 (放水口付近)	22SS0015	2022.5.9	-	0.097	0.086	N D	
海底土 (放水口付近)	23SS0019	2023. 5. 9	-	0.069	0.062	N D	
海底土 (鮫浦湾)	11SS0018	2011.11.15	-	0.13	0.11	N D	
海底土 (鮫浦湾)	15SS0020	2015. 5. 12	_	0.11	0.091	N D	
海底土 (鮫浦湾)	16SS0022	2016. 5. 23	_	0.12	0.11	N D	
海底土(鮫浦湾)	20SS0147	2020.11.10	-	0.12	0.10	N D	
海底土 (鮫浦湾)	21SS0138	2021.11.25	—	0.12	0.098	N D	
海底土 (鮫浦湾)	22SS0114	2022.11.14	-	0.12	0.11	N D	
海底土(気仙沼湾)	09SS0137	2009.10.30	$0.020 \pm 0.0044$	1.6±	0.070	-	
海底土(気仙沼湾)	10SS0119	2010. 10. 12	$0.014 \pm 0.0037$	1.5±	0.07	-	
海底十 (気仙沼湾)	11SS0025	2011.11.21	$0.017 \pm 0.0040$	1.2±	0.06	N D	
				0.67	0.57		
海底十 (気仙沼湾)	12550098	2012, 10, 26	$0.011 \pm 0.0033$	0.79±	0.041	N D	
				0.42	0.36		
海底土(気仙沼湾)	13SS0103	2013. 10. 15	-	0.30	0.26	N D	
海底土(気仙沼湾)	14SS0100	2014.10.9	-	0.34	0.30	N D	
海底土(気仙沼湾)	15SS0104	2015.10.19	-	0.33	0.29	N D	
海底土(気仙沼湾)	16SS0125	2016. 10. 18	-	0.33	0.30	N D	
海底土(気仙沼湾)	17SS0132	2017. 10. 12	-	0.25	0.23	N D	
海底土(気仙沼湾)	18SS0104	2018. 10. 16	-	0.29	0.25	N D	
海底土(気仙沼湾)	19SS0108	2019. 10. 28	-	0.27	0.24	N D	
海底土(気仙沼湾)	20SS0123	2020. 10. 9	-	0.28	0.25	N D	
海底土(気仙沼湾)	21SS0100	2021.10.7	-	0.29	0.25	N D	
海底土(気仙沼湾)	22SS0089	2022. 10. 17	-	0.34	0.29	N D	
陸水(女川浄水場)	23LWBG001	2023. 10. 31	—	_	_	$0.64 \pm 0.13$	
陸水(須江山浄水場)	23LWBG002	2023. 11. 1	—	-		$1.0\pm0.15$	D /T
隆水 (六本木净水場) 陸北 (上並知為上居)	23LWBG003	2023. 11. 1	_	_		$0.89 \pm 0.15$	mbq/L
座水 (人宣沢伊水場) 時水 (英三へ法よ男)	23LWBG004	2023.10.30	_	_		$0.51\pm0.13$	
[隆水(新尸倉净水場)	23LWBG005	2023.10.30	-			$0.89 \pm 0.15$	

	고 마 사람은	試料採取日	238-	239+2-	⁴⁰ Pu	90.~	14 /L-
訊科名 (採取地点)	訊科番方	又は採取期間	²⁰⁰ Pu	²³⁹ Pu	²⁴⁰ Pu	Sr	单位.
カキ(周辺海域)	09MP0130	2009. 10. 20	N D	$0.0024 \pm$	0.00041	-	
カキ (飯子浜)	10MP0122	2010. 10. 25	N D	$0.0020 \pm$	0.00039	-	
カキ(気仙沼)	10MP0145	2010.11.22	N D	$0.0020 \pm$	0.00039	-	
カキ (尾浦)	12MP0123	2012.11.30	N D	$0.0037 \pm$	0.00046	—	
カキ (野々浜)	14MP0102	2014.10.15	_	0.00098	0.00081	-	
ワカメ(放水口付近)	11MP0038	2012.2.6	N D	0.0010±	0.00031	-	
ホヤ (塚浜)	15MP0001	2015. 4. 16	—	0.0013	0.0010	-	
ホヤ (小屋取)	15MP0015	2015. 4. 27	_	0.00052	0.00038	-	
アラメ (放水口付近)	091S0100	2009.8.4	N D	0.0018±	0.00049	_	
アラメ(放水口付近)	10IS0080	2010. 8. 9	N D	$0.0027 \pm$	0.00059	-	
アラメ(放水口付近)	12IS0066	2012. 8. 7	N D	0.0023±	0.00048	-	
アラメ (放水口付近)	13IS0078	2013. 8. 12	N D	0.0026±	0.00054	-	
	14100070	0014 0 5		0.0013	0.00099	_	
アフメ(放水口付近)	14180079	2014. 8. 5	_	0.0012	0.0010	_	
	16150070	2015. 8. 5		0.0019	0.0017	_	
アラメ (放水口付近)	17150150	2010. 8. 25	_	0.0023	0.0021	_	
アラメ (放水口付近)	18IS0121	2018 11 6	_	0.0019	0.0015	_	
アラメ (放水口付近)	19150118	2019. 11. 6	_	0.0027	0.0024	_	
アラメ(放水口付近)	201S0080	2020. 8. 5	_	0.0011	0.00099	_	
アラメ (放水口付近)	21IS0066	2021.8.4	_	0.0017	0.0015	-	
アラメ (放水口付近)	22IS0064	2022.8.3	—	0.00085	0.00073	-	
アラメ(十三浜)	09IS0097	2009.8.3	N D	0.0016±	0.00043	-	
アラメ(十三浜)	10IS0081	2010. 8. 9	N D	0.0026±	0.00056	-	
アラメ(十三浜)	12IS0062	2012.8.6	N D	0.0016±	0.00040	-	
アラメ(十三浜)	13IS0083	2013. 8. 28	N D	0.0022±	0.00049	-	
アラメ(十三浜)	14IS0080	2014. 8. 5	_	0.0011	0.0010	-	
アラメ(十三浜)	15IS0073	2015. 8. 18	-	0.0013	0.0011	-	
プラメ(十二浜)	16180094	2016. 9. 5	_	0.0015	0.0012	_	
ノフメ(十二浜)	17150159	2017.11.14		0.0011	0.00099	_	
アラメ (十三近)	10150125	2010.11.12	_	0.0014	0.0015	_	
アラメ (十三浜)	20150086	2020 8 6	_	0.00092	0.0010	_	
アラメ(十三浜)	21IS0062	2021. 8. 2	_	0.00082	0.00070	_	
アラメ (十三浜)	22IS0069	2022.8.22	-	0.0012	0.0010	-	Ba/kg生
アラメ (宮戸)	09IS0098	2009.8.3	N D	Ν	D	_	Dq/ ng_L
アラメ (宮戸)	10IS0082	2010. 8. 9	N D	0.0011±	0.00036	_	
アラメ (宮戸)	12IS0064	2012.8.6	N D	0.0016±	0.00039	—	
アラメ (宮戸)	13IS0081	2013. 8. 28	N D	$0.0020 \pm$	0.00044	-	
アラメ (宮戸)	14IS0081	2014. 8. 5	—	0.00093	0.00076	-	
アラメ (宮戸)	151S0074	2015. 8. 18	-	0.00082	0.00064	-	
ノフメ(宮戸)	16150095	2016. 9. 5		0.0010	0.00087		
ノノノ (呂尸) アラメ (宣百)	18150125	2017.11.14		0.0013	0.0013	_	
アラメ (宮戸)	19150123	2018.11.12	_	0.0017	0.0014	_	
アラメ (宮戸)	20150089	2020. 8. 6	_	0.00073	0.00063	_	
アラメ (宮戸)	21IS0064	2021. 8. 2	—	0.00073	0.00065	_	
アラメ (宮戸)	22IS0066	2022.8.22	_	0.00065	0.00058	-	
エゾノネジモク(放水口付近)	17IS0163	2017.11.20	—	0.0030	0.0026	$0.056 \pm 0.013$	
エゾノネジモク(放水口付近)	18IS0140	2018.12.3	-	0.0042	0.0032	N D	
エゾノネジモク(放水口付近)	19IS0017	2019. 5. 9	-	0.0063	0.0052	-	
エゾノネジモク(放水口付近)	20IS0014	2020. 5. 11	-	0.0033	0.0030	—	
エゾノネジモク(放水口付近)	21IS0012	2021.5.10	-	0.0032	0.0027	-	
エゾ ノネジ モク (放水口付近)	22IS0018	2022. 5. 10	_	0.0035	0.0030	-	
エゾ ノネジ モク (放水口付近)	23IS0021	2023. 5. 15	—	0.0025	0.0022	-	
	171S0170	2017.11.29	_	0.0018	0.0014	-	
1) バシモグ(十三浜)	20150023	2020. 5. 18		0.0035	0.0030		
エノノヤノモノ (十二供)	21130018	2021. 5. 16		0.0038	0.0029	_	
エリ ノネノ し (十三浜)	22130021	2022. 5. 25	_	0.0033	0.0030	_	
エゾ ノネジ モク (小竹浜)	17IS0178	2017. 12. 7	_	0.0030	0.0021	_	
エゾ ノネジ モク (小竹浜)	18IS0144	2018.12.3	-	0.0028	0.0022	-	
エゾ ノネジ モク (小竹浜)	20IS0021	2020. 5. 18	-	0.0019	0.0015	-	
ェリブノネジ モク (小竹浜)	21IS0016	2021. 5. 18	_	0.0016	0.0014		
エゾノネジモク(小竹浜)	22IS0023	2022. 5. 23		0.0023	0.0020	_	
エゾノネジモク(小竹浜)	23IS0023	2023. 5. 16		0.0018	0.0016		
ヨレモク(小竹浜)	19IS0027	2019.5.30		0.0029	0.0024		
ムラサキイガイ(前面海域)							
	10IS0121	2010. 10. 19	N D	0.00099±	=0.00023	-	
ムラサキイガイ(前面海域)	10IS0121 11IS0030	2010. 10. 19 2011. 12. 2	N D N D	0.00099± N	= 0. 00023 D	N D	

* 委託業務を開始した年度であり、過去の年度に採取された試料を調査している場合がある。

### 資料3 緊急事態が発生した場合への平常時からの備えとして実施した 環境試料中の放射性物質濃度の測定結果

### 1 まえがき

原子力規制庁が定める「平常時モニタリングについて(原子力災害対策指針補足参考資料)」におい て、緊急事態が発生した場合への平常時からの備えとして、PAZ及びUPZ内の計画した地点で、土壌及び 陸水を5年程度で調査し(土壌のプルトニウム分析は1回のみ実施)、その後も継続して放射性物質の 濃度の水準を把握することとされているため、必要な環境試料の採取及び測定を実施した。

本資料においては、Ge半導体検出器による分析結果及びトリチウム分析結果(検出器の主な性能等は 資料1参照)を示す。

なお、プルトニウム分析及び放射性ストロンチウム分析結果の詳細については、資料2に掲載している。

### 2 分析結果

表1に陸土10検体の生試料の測定結果を、表2に陸土10検体の乾燥試料の測定結果を示す。全 ての試料から¹³⁷Csが検出され、一部試料から¹³⁴Csが検出されたが、その値は、女川原子力発電所環境放 射能測定計画に基づき採取している試料の測定値と同程度であった。

表3及び表4に陸水4検体の測定結果を示す。一部試料から¹³⁷Csが検出されたが、その値は、女川 原子力発電所環境放射能測定計画に基づき採取している試料の測定値と同程度であった。

### (参考) 測定結果一覧

緊急事態が発生した場合への平常時からの備えとしてこれまでに測定を実施した陸土及び陸水の測 定結果を参考1及び参考2に示す。

なお、陸土採取地点については、女川原子力発電所からの距離や方位のバランスを勘案した25地点 とし、陸水採取地点については、UPZ内に水源を持つ浄水場12地点とした。

## 表1 緊急事態が発生した場合への平常時からの備えとして実施した 環境試料中の放射性物質濃度の測定結果 (陸土:生試料)

	試料名	隆 土						
採取地点		石巻市新栄 (石巻稲井局近傍)	石巻市桃浦 (石巻桃浦局)	石巻市荻浜 (荻浜MS ^{*1} )	石巻市田代浜 (田代島局)	石巻市相野谷 (河北局近傍)		
採取月日		2023.10.4	2023. 9. 29	2023. 9. 29	2023.10.3	2023.10.4		
放射	Mn- 54	N D	N D	N D	N D	N D		
	Co- 58	N D	N D	N D	N D	N D		
	Fe- 59	N D	N D	N D	N D	N D		
	Co- 60	N D	N D	N D	N D	N D		
的能	Cs- 134	$0.62 \pm 0.20$	(0.65)	N D	N D	$1.5 \pm 0.3$		
	Cs- 137	$16.5 \pm 0.4$	24.9 $\pm$ 0.5	$4.6 \pm 0.3$	9.7 $\pm$ 0.4	$70.6 \pm 0.8$		
	Be- 7	10±3	N D	N D	N D	N D		
	K- 40	$328 \pm 6$	$371 \pm 7$	$576 \pm 8$	$475 \pm 9$	$381 \pm 7$		
	換算係数 ^{*2}	75.3	79.2	40.7	52.3	64.3		
	試料量(g生)	170	165	144	80	149		
	測定時間(秒)	80000	80000	80000	80000	80000		
	備考							

単位:Bq/kg生

(注)NDであって、スペクトル上で光電ピークが認められた場合、検出下限値をカッコ()書きで示す。

*1 MSとは、モニタリングステーションを表す。

*2 換算係数とは、Bq/kg生からBq/m²への換算乗数を表す。

						単位:Bq/kg生			
	試料名		隆 土						
採取地点		石巻市雄勝町大須 (雄勝局近傍)	石巻市須江 (河南局)	石巻市北上町 十三浜(北上局)	石巻市長渡浜杉 (網地島局)	石巻市鮎川浜 (牡鹿清崎局)			
	採取月日	2023.10.4	2023.10.4	2023.10.4	2023.10.3	2023. 9. 27			
放	Mn- 54	N D	N D	N D	N D	N D			
	Co- 58	N D	N D	N D	N D	N D			
	Fe- 59	N D	N D	N D	N D	N D			
	Co- 60	N D	N D	N D	N D	N D			
約 能	Cs- 134	(0.54)	$2.5 \pm 0.3$	$1.9 \pm 0.3$	2.1 $\pm$ 0.3	$2.2\pm0.3$			
110	Cs- 137	$21.4 \pm 0.4$	$121 \pm 1$	$110 \pm 1$	$130 \pm 1$	92.4 $\pm$ 1.0			
	Be- 7	N D	N D	N D	N D	N D			
	K- 40	$314 \pm 6$	$462 \pm 8$	$388 \pm 8$	$646 \pm 10$	$480 \pm 9$			
換算係数*		88.6	59.4	40.0	56.8	61.2			
	試料量(g生)	185	149	117	112	84			
	測定時間(秒)	80000	80000	80000	80000	80000			
	備考								

(注)NDであって、スペクトル上で光電ピークが認められた場合、検出下限値をカッコ()書きで示す。

* 換算係数とは、Bq/kg生からBq/m²への換算乗数を表す。

### 表2 緊急事態が発生した場合への平常時からの備えとして実施した 環境試料中の放射性物質濃度の測定結果 (陸土:乾燥試料)

	試料名			陸土		
採取地点		石巻市新栄 (石巻稲井局近傍)	石巻市桃浦 (石巻桃浦局)	石巻市荻浜 (荻浜MS ^{*1} )	石巻市田代浜 (田代島局)	石巻市相野谷 (河北局近傍)
採取月日		2023.10.4	2023. 9. 29	2023. 9. 29	2023.10.3	2023.10.4
	Mn- 54	N D	N D	N D	N D	N D
放	Co- 58	N D	N D	N D	N D	N D
	Fe- 59	N D	N D	N D	N D	N D
	Co- 60	N D	N D	N D	N D	N D
北	Cs- 134	$1.0\pm 0.3$	N D	N D	N D	$2.0\pm0.3$
	Cs- 137	$30.0\pm0.7$	$23.3 \pm 0.5$	$7.3 \pm 0.4$	$11.0\pm0.4$	$107 \pm 1$
	Be- 7	N D	N D	N D	(15)	N D
	K- 40	$560 \pm 10$	$400 \pm 7$	$623 \pm 10$	$588\pm9$	$487\pm9$
		52.9	62.6	23.8	28.4	48.3
	試料量(g乾土)	98	147	134	132	116
	測定時間(秒)	80000	80000	80000	80000	80000
	備考					

単位:Ba/kg乾土

(注)NDであって、スペクトル上で光電ピークが認められた場合、検出下限値をカッコ()書きで示す。

*1 MSとは、モニタリングステーションを表す。

*2 換算係数とは、Bq/kg生からBq/m²への換算乗数を表す。

					<u>±</u>	毕业:Bq/kg乾工
	試料名			陸土		
採取地点		石巻市雄勝町大須 (雄勝局近傍)	石巻市須江 (河南局)	石巻市北上町 十三浜(北上局)	石巻市長渡浜杉 (網地島局)	石巻市鮎川浜 (牡鹿清崎局)
	採取月日	2023.10.4	2023.10.4	2023.10.4	2023.10.3	2023. 9. 27
	Mn- 54	N D	N D	N D	N D	N D
放射	Co- 58	N D	N D	N D	N D	N D
	Fe- 59	N D	N D	N D	N D	N D
	Co- 60	N D	N D	N D	N D	N D
約 能	Cs- 134	N D	4.1 $\pm$ 0.3	$3.5 \pm 0.3$	$2.6 \pm 0.4$	$2.5 \pm 0.3$
110	Cs- 137	$24.8 \pm 0.5$	$191\pm1$	$165 \pm 1$	$166 \pm 1$	$125 \pm 1$
	Be- 7	N D	N D	N D	N D	N D
	K- 40	$361 \pm 7$	$489 \pm 9$	$490\pm9$	$810 \pm 10$	$574 \pm 9$
 換算係数 [*]		75.0	40.9	25.4	41.3	46.8
	試料量(g乾土)	152	130	112	117	126
	測定時間(秒)	80000	80000	80000	80000	80000
	備考					

* 換算係数とは、Bq/kg生からBq/m²への換算乗数を表す。

畄/台·D≈/1-∞杏土

### 表3 緊急事態が発生した場合への平常時からの備えとして実施した 環境試料中の放射性物質濃度の測定結果 (陸水:原水)

80000

放射能

測定時間(秒)

備考

試料名		陸	水	
採取地点	石巻市 (六本木浄水場)	石巻市 (須江山浄水場)	登米市 (大萱沢浄水場)	南三陸町 (新戸倉浄水場)
採取月日	2023. 11. 1	2023.11.1	2023. 10. 30	2023. 10. 30
Mn- 54	N D	N D	N D	N D
Co- 58	N D	N D	N D	N D
Fe- 59	N D	N D	N D	N D
Co- 60	N D	N D	N D	N D
Cs- 134	N D	N D	N D	N D
Cs- 137	N D	$1.3 \pm 0.4$	N D	N D
Be- 7	N D	$26 \pm 5$	N D	N D
K- 40	$40 \pm 7$	$46 \pm 7$	(18)	$28 \pm 6$
試料量(L)	20.0	20.0	20.0	20.0

80000

単位:mBq/L

80000

(注)NDであって、スペクトル上で光電ピークが認められた場合、検出下限値をカッコ()書きで示す。

80000

表4	緊急事態が発生した場合への平常時からの備えとして実施した
	環境試料中の放射性物質濃度の測定結果

封約夕	该野茎叶	拉历年日日	H-3濃度		
武学石	环境运动	採取十万日	測定値	単位	
陸水 -	石巻市 (六本木浄水場)	2023. 11. 1	N D	mBq/L	
	石巻市 (須江山浄水場)	2023. 11. 1	N D		
	登米市 (大萱沢浄水場)	2023. 10. 30	N D		
	南三陸町 (新戸倉浄水場)	2023. 10. 30	N D		

### (参考1) 緊急事態が発生した場合への平常時からの備えとして実施した 陸土中の放射性物質濃度の測定結果一覧

単位:Bq/k						単位:Bq/kg
地点名	採取年月日		Cs-137(乾燥試料)	Sr-90	Pu-238	回のみ Pu-239+240
女川町女川浜 (女川MS)	2022. 12. 21	67.5±0.7	86.5±1.0	$0.26 \pm 0.077$	N D	N D
女川町塚浜 ^{*1} (塚浜MS近傍)	2024. 2. 19	_*2	74.4±0.7	N D	N D	$0.012 \pm 0.004$
女川町尾浦 (女川尾浦局)	2022. 12. 21	3.3±0.3	6.8±0.4	N D	N D	N D
女川町指ヶ浜 (女川指ヶ浜局)	2022. 12. 20	$2.0 \pm 0.3$	1.8±0.3	N D	N D	$0.012 \pm 0.0033$
女川町出島 (寺間MS近傍)	2023. 12. 7	_*2	16.2±0.4	N D	N D	$0.018 \pm 0.004$
女川町江島 (江島MS近傍)	2023. 12. 7	_*2	72.0±0.7	N D	N D	$0.017 \pm 0.004$
女川町浦宿浜 (女川浦宿浜局)	2022. 12. 20	5.7 $\pm$ 0.3	6.3±0.4	N D	N D	N D
石巻市渡波 (石巻佐須局)	2022. 12. 20	123±1	154±1	N D	N D	$0.011 \pm 0.0035$
石巻市新栄 (石巻稲井局近傍)	2023. 10. 4	16.5 $\pm$ 0.4	$30.0 \pm 0.7$	$0.24 \pm 0.074$	N D	N D
石巻市桃浦 (石巻桃浦局)	2023. 9. 29	24.9 $\pm$ 0.5	23.3±0.5	N D	N D	$0.021 \pm 0.0050$
石巻市荻浜 (荻浜MS)	2023. 9. 29	4.6±0.3	$7.3 \pm 0.4$	$0.31 \pm 0.082$	N D	$0.025 \pm 0.0053$
石巻市田代浜 (田代島局)	2023. 10. 3	9.7 $\pm$ 0.4	11.0±0.4	N D	N D	0.042±0.0069
石巻市相野谷 (河北局近傍)	2023.10.4	70.6±0.8	$107 \pm 1$	N D	N D	$0.017 \pm 0.0040$
石巻市雄勝町大須 (雄勝局近傍)	2023. 10. 4	21.4±0.4	24.8±0.5	N D	N D	N D
石巻市須江 (河南局)	2023. 10. 4	121±1	191±1	N D	N D	N D
石巻市北上町 十三浜(北上局)	2023. 10. 4	110±1	$165 \pm 1$	0.33±0.075	N D	$0.010 \pm 0.0032$
石巻市長渡浜杉 (網地島局)	2023. 10. 3	$130 \pm 1$	$166 \pm 1$	N D	N D	$0.043 \pm 0.0065$
石巻市鮎川浜 (牡鹿清崎局)	2023. 9. 27	92.4±1.0	$125 \pm 1$	$0.34 \pm 0.090$	N D	N D
石巻市前網浜 (前網MS近傍)	2023. 12. 8	_*2	191±1	$1.2 \pm 0.2$	N D	$0.32 \pm 0.03$
石巻市谷川浜 ^{*3} (谷川MS近傍)					N D	$0.028 \pm 0.0054$
登米市津山町柳津 (津山局近傍)	2022. 12. 15	68.9±0.8	$95 \pm 1$	N D	N D	N D
東松島市小野 (鳴瀬局)	2022. 12. 14	48.6±0.7	56.7±0.8	N D	N D	N D
涌谷町猪岡短台 (涌谷局)	2022. 12. 20	23.2±0.5	28.2±0.6	N D	N D	N D
美里町二郷 (南郷局)	2022. 12. 15	32.5±0.6	37.0±0.7	N D	N D	N D
南三陸町戸倉 (志津川局)	2022. 12. 15	5.4±0.3	2.7±0.3	N D	N D	N D

(注) 空欄は、第1期の期間内に実施予定である。
 *1 塚浜MS近傍におけるプルトニウム分析は、令和5年12月8日に採取した土壌の測定結果である。
 *2 東北電力MS付近の土壌測定については、生試料の測定を実施していない。
 *3 谷川MS近傍におけるプルトニウム分析は、平成22年6月10日に採取した土壌の測定結果である。

### (参考2) 緊急事態が発生した場合への平常時からの備えとして実施した 陸水中の放射性物質濃度の測定結果一覧

				単位:mBq/L		
	第1期(2022~2026)					
地点名	採取年月日	Cs-137	Sr-90	H-3		
女川浄水場*	2024. 1. 11	N D	$0.64 \pm 0.13$	N D		
鷲神浄水場						
御前浄水場						
針浜浄水場						
大街道浄水場						
六本木浄水場	2023.11.1	$1.3 \pm 0.4$	$0.89 \pm 0.15$	N D		
原浄水場						
坊ヶ沢浄水場						
須江山浄水場	2023.11.1	N D	$1.0 \pm 0.15$	N D		
神取山浄水場						
大萱沢浄水場	2023. 10. 30	N D	0.51±0.13	N D		
新戸倉浄水場	2023. 10. 30	N D	$0.89 \pm 0.15$	N D		

(注)空欄は、第1期の期間内に実施予定である。

* 女川浄水場におけるSr-90分析は、令和5年10月31日に採取した陸水の測定結果である。

有田富和、安達里美、高橋稜* *元宮城県環境放射線監視センター

### I はじめに

宮城県と東北電力(株)では、女川原子力発電所の周辺監視のため、女川原子力発電所環境放射 能及び温排水測定基本計画等(以下「計画」という)に基づき、従来から年に8回、水道原水を採 取し、その放射能を測定している。県では女川浜地区の女川浄水場と前網地区の寄磯浄水場の水 道原水(河川等から取り入れられた浄水処理前の水)をそれぞれ年間2回採取し、セシウム137等 のγ線放出対象核種とトリチウムの測定を実施している。2022年度の試料採取の際に、寄磯浄水 場の設置・管理者である石巻地方広域水道企業団から、同浄水場が2023年内にも廃止となる可能 性が示されたため、新たな水道原水採取地を選定することが必要となった。

### Ⅱ 方法

### 1 候補地点の選定

計画により、候補地点は以下の条件を満たす必要があると考えられた。

①取水地点が発電所からおよそ10km以内に位置していること。
 ②寄磯浄水場と同様に発電所の南方に位置していること。
 ②寄磯浄水場と同様に表流水を原水としていること。

③中長期的かつ継続的に採取が可能であること。

石巻市の上水道を管理する石巻地方広域水道企業団の助言を受けて選定を進めた結果、これ らの要件を満たす浄水場は石巻市泊浜の泊浄水場と同市新山浜の新山浄水場の2ヶ所のみであ った。両浄水場共に現在の砂ろ過式から膜ろ過式に改修される計画であるが、原水の採取に支 障はないとのことであった。2022年度環境放射能監視検討会で学識経験者の助言を受けて検討 した結果、より発電所に近い泊浄水場を候補地点として比較調査を進めることとした。

### 2 放射能の測定比較

女川原子力発電所環境放射能及び温排水測定基本計画等により、採取地点の変更に際しては 可能な限り測定比較を行うこととされている。このため、2023年3月16日及び4月12日に寄磯・泊 の両浄水場の原水をそれぞれ採取し、ゲルマニウム半導体検出器による監視対象核種の測定及 び低バックグラウンド液体シンチレーションカウンターによるトリチウムの測定を実施した。

### Ⅲ 結果

2023年4月12日に採取した泊浄水場の原水から、微量のセシウム137が検出された(1.9 mBq/L)。 この値は2022年7月に寄磯浄水場で採取した原水から検出されたセシウム137の値(2.0 mBq/L)と 同程度であり、森林環境中を流れる表流水に含まれる微細な土壤粒子に由来するものと考えられ た。なお、トリチウムを含む他の対象核種はいずれの試料からも検出されなかった。以上の結果を 踏まえて、第164回女川原子力発電所環境調査測定技術会(2023年5月11日開催)及び第164回女川原 子力発電所環境保全監視協議会(2023年5月25日開催)に計画の変更(陸水採取地点の前網から泊浜 への変更)を諮り、了承を得た。なお、計画変更後、2023年度中に採取した試料(2023年7月4日及 び2024年1月11日採取)からは、トリチウムを含む対象核種はいずれも検出されなかった。

### Ⅳ まとめ

県では女川原子力発電所環境放射能及び温排水測定基本計画等に基づき、前網地区(寄磯浄水 場)の水道原水の放射能の測定を実施してきた。2022年度に浄水場の管理者より浄水場の統廃合 により 2023年度中に同浄水場を廃止する方針が示された。このため新たな採取地点の候補とし て泊浜の泊浄水場を選定した。泊浄水場と寄磯浄水場から試料を試験採取し、放射能を測定して 比較を実施し、採取地点として問題がないことが確認できたことから、2023年度採取分から寄磯 浄水場に替わって泊浄水場の水道原水を陸水試料に位置づけた。これにより、浄水場統廃合後も 水道原水の適切な放射能監視体制の維持が可能となった。

安達里美、有田富和、杉山照徳*1、長谷部洋*2

- *1 現 宮城県環境生活部廃棄物対策課
- *2 現 宮城県復興·危機管理部原子力安全対策課

### I はじめに

2023年4月12日~13日及び5月22日に宮城県仙台市を含む日本の広い範囲で黄砂が観測された。 宮城県では2000年以降の春期を中心として、大気浮遊じんに中国大陸からの黄砂由来と推定される Cs-137を確認している^{1)~3)}。また、2011年以降、東京電力福島第一原子力発電所事故の影響により、多く の環境試料で Cs-137 が検出されていたが、大気浮遊じんの試料では近年、その影響も少なくなってき ており、今回、現在の黄砂が環境試料へ与える影響を調査するために、黄砂観測日にサンプリングした 大気浮遊じんの測定を行ったので、その結果について述べる。

### Ⅱ 方法

気象庁の黄砂解析予測 4に基づき、黄砂の到来が予測された日を含む数日間、及び継続する数日間、 宮城県環境放射線監視センター(宮城県仙台市宮城野区幸町 4-7-1-2)前庭にハイボリュームエアサン プラー(HV-500R)を設置し、ガラス繊維ろ紙(GB-100R 203×254 mm)で毎分 1000L の流量で吸引 し、黄砂を含んだ大気浮遊じんを捕集した。

吸引終了後にろ紙を回収して円形に打ち抜き、U8 容器に充填してゲルマニウム半導体検出器で 240,000 秒間の測定を行った。採取中の減衰は考慮していない。なお、バックグラウンド減算も通常の 測定と同じく実施した。

### Ⅲ 結果

宮城県に顕著な黄砂が飛来した期間(2023年4月12日、4月13日、5月22日)、を含む4月12日 ~14日、5月22日~24日及びそれに引き続く期間に吸引した大気浮遊じんの測定結果を表に示す。な お、すべての試料で Cs-137 は不検出であった。

表 測定結果

		0000 4 10	9099 4 14	0,000 5 00	9099 <b>F</b> 94	2022 5 20	0000 5 00
採取	期間	2023.4.12	2023.4.14	2023.3.22	2023.3.24	2023.3.26	2025.5.29
	× / yi 1 = j	$\sim 2023.4.14$	$\sim 2023.4.17$	$\sim 2023.5.24$	$\sim 2023.5.26$	$\sim 2023.5.29$	$\sim 2023.5.31$
黄砂観	1測日 ⁵⁾	$2023.4.12 \sim 13$		2023.5.22			
	Db-910	$0.58\pm0.05$	$0.73 \pm 0.03$	$0.59\pm0.05$	$0.48\pm0.04$	$0.58\pm0.03$	0.52±0.04
	Pb-210	(0.13)	(0.087)	(0.13)	(0.13)	(0.086)	(0.12)
	Dor 7	9.1±0.1	6.08±0.09	4.12±0.07	$4.04 \pm 0.07$	$5.76\pm0.06$	3.70±0.07
	De 1	(0.20)	(0.14)	(0.13)	(0.12)	(0.081)	(0.12)
	C=124	N D	N D	N D	N D	N D	N D
放射能	08-134	(0.015)	(0.010)	(0.017)	(0.015)	(0.013)	(0.015)
	Ca-197	N D	N D	LTD	N D	N D	LTD
	US-137	(0.016)	(0.0099)	(0.016)	(0.014)	(0.0097)	(0.014)
	IZ = 40	0.31±0.10	0.22±0.07	LTD	N D	0.20±0.06	N D
	K * 40	(0.29)	(0.20)	(0.29)	(0.28)	(0.19)	(0.29)
	単位	mBq/m ³	mBq/m ³	mBq/m ³	$mBq/m^3$	mBq/m ³	mBq/m ³
試料量	$\frac{1}{2}$ (m ³ )	1547	2242	1524	1532	2309	1551
Ge検出	器番号	1	1	1	1	1	1
備	考		参考測定		参考測定	参考測定	参考測定

(注1) 不検出を ND で示す。

- (注 2) 不検出(ND)であって、スペクトル上で光電ピークが認められた場合、LTDと示す。
- (注3)検出下限値はカッコ()書きの数値で示す。

### Ⅳ 考察

2000年代に確認された黄砂に伴う Cs-137 の起源については、既報³⁰にて、中国大陸において、地表 土壌に蓄積していた過去の核実験起因の Cs-137 が、砂漠化現象等により露出・飛散しやすくなり、砂 塵嵐に伴ってエアロゾル化して大気上層へ移行し、黄砂粒子とともに遠方に運ばれるものと推定してい る。しかし現在では、1980年に中国で行われた最後の大気圏内核実験⁶⁰から 40年以上経過しており、 過去には微量に検出されていた黄砂由来の Cs-137 も、減衰によりその影響は少なくなっていると考え られる。

既報 ^{1)~3)}と測定機器や条件が異なるため、直接的な比較は困難であるが、今回の測定結果では、黄砂 観測日にサンプリングした大気浮遊じん中から Cs-137 は検出されず、黄砂の影響は認められなかった。 しかしながら、試料数が少ないことから、今後も継続して黄砂と Cs-137 の関係について調査を行って いきたい。

### V 参考文献

- 1) 宮城県原子力センター年報、第19巻、P10-18(2001)
- 2) 宮城県原子力センター年報、第20巻、P5-9(2002)
- 3) 宮城県原子力センター年報、第21巻、P5-11(2003)
- 4) 気象庁"黄砂情報"気象庁ホームページ
   URL: https://www.data.jma.go.jp/env/kosa/fcst/(参照 2024.12.17)
- 5) 気象庁 "2023 年黄砂観測日および観測地点の表"気象庁ホームページ URL: https://www.data.jma.go.jp/gmd/env/kosahp/kosa_table_2023.html (参照 2024.12.17)
- 6) 国立研究開発法人 日本原子力研究開発機構(JAEA) "09-01-01-04 核実験"原子力百科事典 ATOMICA (2007.7)

URL:https://atomica.jaea.go.jp/data/detail/dat_detail_09-01-01-04.html (参照 2024.12.17)

有田富和、高橋稜*、小野原清志* *元宮城県環境放射線監視センター

### I はじめに

宮城県では女川原子力発電所環境放射能及び温排水測定基本計画等に基づき、土壌の放射能測定を実施している。発電所周辺地域と比較するための対照地点としている大崎市岩出山(城山公園内)の表層土壌(深度0~5 cm)のセシウム137(¹³⁷Cs)の濃度は、採取を開始した1983年から東京電力(株)福島第一原子力発電所事故(以下「福島原発事故」という。)前までは3.3~7.6 Bq/kg(乾土)の範囲で推移していたが、同事故後には数百Bq/kg(乾土)まで上昇し、それまで不検出であったセシウム134(¹³⁴Cs)も検出されるようになった。測定試料の中では比較的高い濃度の¹³⁷Csが検出されており、また、2023年度現在も¹³⁴Csが継続して検出されている試料でもある。

土壌の放射性セシウム濃度は、隣接する森林からの落葉や腐植質中の放射性セシウムの流入な どにより、物理的半減期どおりには減衰しない。城山公園の採取地点も森林に隣接していること から、それらの影響を受けている可能性が否定できない。そこで今回、採取が比較的容易な落葉を 試料として放射性セシウムの濃度を測定し、同年及び翌年に採取した土壌との比較を試みたので 報告する。

### Ⅱ 方法

### 1 土壌の採取と前処理

土壌は、あらかじめ草を刈り地面を露出させてから、専用の採土器(内径50mm)をハンマーで 打ち込み、表層土(0~5cm深さ)を1m間隔で10ヶ所程度ビニール袋に採取し混合した。ステン レスバットに広げて草の根、枯れ葉、小石などの異物を除去し、105℃で乾燥後、ふるいにかけ て小石や砂などの異物を除去し、U8容器に充填して測定試料とした。なお、土壌の採取は例年6 月に実施している。

### 2 落葉の回収と前処理

2020年11月20日に、大崎市の陸土採取地点を中心におよそ50 mから落葉を回収した。広葉樹の葉と針葉樹(スギ)の枝葉に分けて計量し、105 ℃で乾燥、450 ℃で灰化後、ふるいにかけて 小石や砂などの異物を除去し、U8容器に充填して測定試料とした。

### 3 ゲルマニウム半導体検出器による分析

通常の試料分析と同様にゲルマニウム半導体検出器により80,000秒の測定を実施した。放射 能濃度は、乾燥土壌と比較するため、乾燥重量あたりに換算して示した。

### Ⅲ 結果

落葉採取当日の採取地点周辺は広範囲に落葉に完全に覆われており、地肌が見えないほどであった。落葉は大半が落葉広葉樹のものであったが、スギなどの針葉樹の枝葉も堆積していた。

表に落葉から検出された¹³⁷Cs、¹³⁴Cs及び天然核種であるカリウム40(⁴⁰K)の測定値を同年と翌年の土壌の値とともに表に示した。¹³⁷Csを例にとると、広葉樹で土壌の約5%、針葉樹で約2%程度の 濃度であった。また、濃度は低いものの、2023年度時点では土壌以外の試料からはあまり検出され なくなった¹³⁴Csが、広葉樹・針葉樹ともに検出された。

表 検出された核種とその濃度(単位: Bq/kg乾燥重量)

核種	広葉樹の落葉	針葉樹の落葉	土壤(2020/6/12)	土壤(2021/6/9)
¹³⁴ Cs	$0.9 \pm 0.2$	$0.6 \pm 0.1$	29.1 $\pm$ 0.7	$17.6 \pm 0.6$
¹³⁷ Cs	21.4 $\pm$ 0.3	$11.0 \pm 0.1$	$543 \pm 3$	$443 \pm 3$
⁴⁰ K	$200 \pm 6$	$55 \pm 1$	$235 \pm 8$	$228 \pm 8$

### Ⅳ まとめ

土壌採取地点の落葉から¹³⁴Csと¹³⁷Csがともに検出された。この地点の土壌からは現在も福島原 発事故由来の放射性セシウムが検出されており、土壌中の放射性セシウム濃度が高い。採取地点 は草の生い茂る平地で、落葉広葉樹を主とする森林に隣接している。土壌採取の際には落葉など の異物は除去しているものの、採取した土壌の表層付近には腐葉土と思われる黒色の層がある。 11月に落葉の採取のために訪れた現地は、見渡す限り厚く落葉で覆われていた。開けた土地であ るため風も強く、落葉すべてがその場所で腐葉土になるとは考えられないが、この落葉から¹³⁷Csだ けでなく¹³⁴Csまで検出されたことから、森林環境中には放射性セシウムが蓄積されており、落葉が それを隣地の地表に送り届ける経路のひとつとなっていることが示された。今回落葉から検出さ れた放射性セシウムの量では、土壌中セシウム濃度への影響はさほど大きくないが、今後、森林内 の腐葉土層に含まれる放射性セシウムについても深度別の採取や放射性セシウムの水への溶出試 験などを実施することにより、局所環境内でのセシウム循環についての知見が得られるものと考 える。

### 資料7 Sr-90分析における計数値の上昇事象について

安達里美、高群富貴、有田富和、杉山照徳1、長谷部洋2

### 1 概要

本県では、「女川原子力発電所放射能及び温排水測定基本計画」及び「環境放射能測定実施計画」に基づき、女川原子力発電所周辺地域の環境放射線・放射能の監視測定を行っており、年間10検体のストロンチウム分析(以下「Sr-90分析」という。)を実施している。

このたび、令和5年度第2四半期に実施した Sr-90 分析において、過去に例を見ないほどの計数値の 上昇事象が発生し、原因が前処理におけるトロンの子孫核種の影響と推測されたことから、原因の究明 及び低減対策について検討を行ったので、その概要を報告する。

### 2 方法

### 2. 1 令和5年度第2四半期 Sr-90 分析対象試料(採取地点)

- アイナメ(女川原子力発電所前面海域)
- アラメ(女川原子力発電所放水口付近)
- ヨモギ (石巻市谷川浜)
- ヨモギ (大崎市岩出山:対照地点)

### 2. 2 前処理·測定方法

採取した試料は、乾燥と灰化を行い灰試料とした。さらに、抽出処理として、灰化と塩酸(1+3)抽出を 繰り返し行った。以降は、放射能測定法シリーズ No.2 放射性ストロンチウム分析法(文部科学省)のう ち、イオン交換法分析操作に従って実施し、回収率を求めた炭酸ストロンチウムの沈殿から、水酸化鉄(III) 共沈法で Y-90 を分離(ミルキング)し、低バックグラウンド $\beta$ 線自動測定装置(日立アロカメディカル 社製 LBC-4202B)にて測定を行い、Y-90 計数値から Sr-90 の放射能濃度を算出した。なお、放射能濃 度算出にあたり、静電気による計数値上昇の影響を受けやすい1回目の計数値は棄却し、2回目と3回 目の計数値を使用した。ミルキングから測定までの操作方法は以下のとおり。再ミルキングは、操作(6) のミルキング母液を2週間後に 40ml 程度まで加熱濃縮し、塩化鉄(III)-イットリウム混合担体溶液 ((1mgFe+10  $\mu$  gY)/ml) 1ml を加えたのちに操作(3)からの操作を行った。

- ガラスフィルター上の炭酸ストロンチウムの沈殿を100mlビーカーに塩酸(1+11)40ml で溶解する。 また、バックグラウンド(以下「BG」という。)試料として100mlビーカーに塩酸(1+11)40ml を2 つ用意する。
- (2) 試料溶液と BG 試料溶液に塩化鉄(Ⅲ)-イットリウム混合担体溶液((1mgFe+10µgY)/ml) 1ml を正確 に加え、さらに、飽和塩化アンモニウム溶液を 5ml 加える。
- (3) 試料溶液をホットスターラーで撹拌しながら加熱して二酸化炭素を追い出し、アンモニア水を少しず つ加え、水酸化鉄(Ⅲ)を沈殿させる。
- (4) ポリサルフォンホルダーとろ紙(GC-50)を用いて速やかにろ過し(当該日時を「ミルキング日時」とする。) 沈殿を温アンモニア水(1+99) で洗浄する。ろ液と洗液はねじ口びんで受け、保存する。

2 現 宮城県復興·危機管理部原子力安全対策課

¹ 現 宮城県環境生活部廃棄物対策課

- (5) 操作(4)でろ過の終わったビーカーをポリサルフォンホルダーの下におき、沈殿を温塩酸(1+3) で完全 に溶解する。ろ紙上に黄色の鉄(Ⅲ)イオンが認められなくなるまで温塩酸(1+3) で洗浄する。
- (6) 再び操作(3)と(4)を繰り返す。(4)と(6)のろ液と洗液を合わせ塩酸で酸性にして保存する(ミルキング 母液)。さらに、操作(5)と操作(3)を行なう。
- (7) ポリサルフォンホルダーとメンブレンろ紙(2µm)を用いて沈殿を吸引ろ別する。沈殿はアンモニア 水(1+99) で洗浄する。
- (8) ろ紙にメタノールを添加後し、吸引しながらろ紙を乾燥する。乾燥後、台紙とラップでろ紙を封入し、 放射能を測定する。

### 3 測定結果と考察

### 3.1 初回測定結果

初回に低バックグラウンド β線自動測定装置で測定した計数値は表1のとおり。例年の各試料の計数 値(2~3回目)はおおむね表1の下段に示したとおりであるが、BGの計数値は過去の測定と同程度で あったのに対し、アイナメ、アラメ及びヨモギ(岩出山)で高い計数値となった。一方、ヨモギ(谷川 浜)は例年と同程度であった。また、これらの放射能濃度(2~3回目の計数値を用いて算出)を表2 に示す。ヨモギ(谷川浜)を除き、過去範囲を超過していることが分かる。

	BG 1	アイナメ	アラメ	ヨモギ (谷)	ヨモギ (岩)	BG 2
1回目	179	352	140	312	523	52
2回目	69	250	124	276	450	54
3回目	52	179	67	215	422	45
4回目	39	139	87	220	422	39
5回目	49	100	76	191	385	42
例年の計数値	1070	50 a .95	500.05	195 - 970	220-250	10 - 70
(2~3回目)	40, ~ 10	90 [,] ~89	90,~09	125,~270	280,~390	40, ~ 10

表1 初回測定時の低バックグラウンドβ線自動測定装置による計数値(counts/60min)

表 2 初回測定時 Sr-90 放射能濃度

⇒+业  々	Cr. 00 淟 庄(Dr./I-r. 仕)	H23~R4 の測定値範囲	
武 件 名	SF90 侲皮(Bq/kg 生)	(Bq/kg 生)	
アイナメ(前面海域)	$0.081\!\pm\!0.008$	ND	
アラメ(放水口付近)	$0.058 {\pm} 0.016$	ND~0.036	
ヨモギ(谷川浜)	$0.39 {\pm} 0.03$	$0.088 {\sim} 0.54$	
ヨモギ(岩出山)	$0.71\!\pm\!0.04$	$0.16{\sim}0.54$	

### 3. 2 再測定結果

計数率の減少状況を確認するために初回測定試料について1週間後に低バックグラウンドβ線自動測 定装置で再測定した結果は表3のとおり。3.1の結果とともにミルキングからの経過時間に対する正
味計数率をプロットすると、アイナメ(図1)及びアラメ(図2)は Y-90 減衰理想曲線から大きく下方 向に外れた。一方、ヨモギは谷川浜(図3)、岩出山(図4)ともに理想曲線上にあった。このことから アイナメ及びアラメの計数値上昇は Y-90 ではないβ線放出短半減期核種の影響が示唆された。

表 3	初回測定試料を	その一调間	後に再測定1	た計数値	(counts /	60min)
10					(Countes/	00mm/

	BG 1	アイナメ	アラメ	ヨモギ (谷)	ヨモギ (岩)	BG 2
1回目	80	50	59	102	125	51
2回目	39	51	44	70	124	57
3回目	57	51	61	86	112	53



図1 アイナメ初回測定試料の経過時間と正味計数率



図2 アラメ初回測定試料の経過時間と正味計数率



図3 ヨモギ(谷川浜)初回測定試料の経過時間と正味計数率



図4 ヨモギ(岩出山)初回測定試料の経過時間と正味計数率

## 3.3 再ミルキング測定結果

3.2の結果から初回測定時はアイナメ及びアラメに Y-90 ではない β 線放出短半減期核種の影響が示 唆されたことから、前処理操作において空気中のラドン又はトロンの子孫核種が試料と共にマウントさ れたのではないかと推察した。工程を見直したところ、初回ミルキング操作時に空気清浄器等を使用せ ず、強吸引ポンプを使用して試料のマウント及び乾燥を行っていた(図5、吸引ポンプの仕様は参考と して表4に記す)ことから、対策を講じて再ミルキングし、測定を行った。

- イ 試料マウント時のラドン及びトロン対策
  - 全換気空調及び空気清浄器(3台)を作動させ、空気中のちり等を除去。
  - マウント時、強吸引ポンプは使用せず、弱吸引ポンプを使用(図6)。
  - ろ紙の乾燥を吸引ポンプによる風乾ではなく、ホットプレートによる加熱乾燥に変更。



図5 強吸引ポンプでのマウント

空気清浄機の使用なし。 ろ紙の乾燥は、メタノールをろ紙上に添加し、 吸引を続けて風乾。



図6 弱吸引ポンプでのマウント

空気清浄機の使用あり。 吸引時間を短縮するため、マウント後はホットプ レート上でろ紙を加熱し乾燥。

(参考) 表4 吸引ポンプの仕様

	強吸引ポンプ	弱吸引ポンプ
メーカー	東京理化器械(株)	(株)榎本マイクロポンプ製作所
型式	EVP-1100	MV-6005VP
流量	20L/min	4.0L/min 以上

口 結果

アイナメ、アラメは計数値が BG と同程度になり(表5)、放射能濃度は不検出となった(表6)。一 方、ヨモギは谷川浜、岩出山ともに、初回測定時と同程度の放射能濃度となった。

表5 再ミルキングを行った測定試料の計数値 (counts/60min)

	BG 1	アイナメ	アラメ	ヨモギ (谷)	ヨモギ (岩)	BG 2
1回目	74	67	130	278	478	36
2回目	55	52	83	244	457	61
3回目	63	56	89	229	420	71
4回目	54	56	68	241	417	56

表6 再ミルキング時 Sr-90 放射能濃度計算結果

試料名	Sr-90 濃度(Bq/kg 生)		
アイナメ(前面海域)	ND		
アラメ(放水口付近)	ND		
ヨモギ(谷川浜)	$0.36 {\pm} 0.03$		
ヨモギ(岩出山)	$0.71 {\pm} 0.04$		

## 3.4 考察

初回測定のアイナメ試料についてミルキングからの経過時間に対する正味計数率をプロットしたもの に近似式を挿入し、その半減期を試算すると11.95時間であった(図7)。Y-90の半減期である64.1時 間と比較すると短く、トロンの子孫核種であるPb-212の半減期10.6時間に近いことから、今回の計数 値上昇はトロンの子孫核種の影響があったものと推察された。一方、同じタイミングで操作を行ったBG やヨモギはそれらの影響が見られなかった。試料毎の強ポンプ稼働時間の違いが影響していると推察さ れるが、他の要因についても検証の余地がある。今後、試料マウント時のトロン子孫核種対策として、 空気清浄器のフィルター交換や清掃を定期的に行い効果的に使用するとともに、吸引ポンプの使用方法 及びろ紙の乾燥方法等について改良していきたい。



図7 アイナメの初回測定時における近似式

宮城県環境放射線監視センター年報 第9巻 (令和5年) 令和7年1月発行

発行者 宮城県仙台市宮城野区幸町四丁目 7-1-2 宮城県環境放射線監視センター TEL. (022)792-6311